Physikpraktikum für Vorgerückte (VP)

vp.phys.ethz.ch

γ-Spectroscopy

Abstract

In this experiment various γ -ray emitting samples are investigated with two most commonly used detectors in γ -spectroscopy, a NaI(TI) scintillation detector and HPGe detector, and their activity measured.

Physics

 γ -radiation is emitted by excited nuclei as a result of nuclear decay (e.g. α - or β -decay) or a nuclear reaction. As an example the decay scheme of ⁶⁰Co shows that two γ -rays are following the β -decay:

Interaction of $\gamma\text{-rays}$ with matter

Detectors

Two types of solid state detectors are commonly used for γ -spectroscopy:

inorganic scintillation detectors - Nal(Tl) detector

the absorbed γ -ray energy is converted to photons, the photocathode converts photons to electrons, which are amplified in the photomultiplier tube (PMT) and collected at the anode for the final signal

semiconductor diode detectors - HPGe detector

the absorbed γ -ray energy creates electron-hole pairs in a semiconductor which are separated in a strong electric field inside the semiconductor and produces a small signal

Superinsulation

Detector Holde

The number of interactions of radiation with matter depends on the sum of cross sections σ of all involved processes:

$$dN(x)=-N(x)\,\sigma\,n\,dx$$

As a result, the initial intensity of a γ -radiation, N_o , decreases exponentially with penetration depth, x, with $\mu = \sigma n$ the linear attenuation coefficient:

$$N(x) = N_0 e^{-\mu x}$$

The activity of the sample is calculated from the intensity of the photopeak, which corresponds to the full energy of the γ -ray:

$$A = N_{photo} / (\Omega / 4\pi \varepsilon (E_{\gamma}) \Gamma (E_{\gamma}) \omega (E_{\gamma})$$

 $\Omega/4π \dots$ solid angle $\Gamma(E_{\gamma}) \dots$ photopeak to total ratio $ε(E_{\gamma}) \dots$ total efficiency $ω(E_{\gamma}) \dots$ absolute intensity of γ-ray

Comparison of γ**-ray Spectra**

