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Abstract Nuclear magnetic resonance (NMR) represents the
selective absorption of electromagnetic radiation by nuclei
with nonzero spin placed in an external magnetic field. When
the field is kept fixed and strong RF pulses excite the sample,
its response, the free induction decay - FID, delivers impor-
tant information on static (line shape) and dynamic (relax-
ation time) properties. The dependence of NMR parameters
on the nuclei surroundings, makes it a highly sensitive probe
to the immediate environment and, hence, an extremely ver-
satile spectroscopic tool. The vast and successful applica-
tions of NMR in the most disparate fields of science are wit-
nessed by the many Nobel prizes in physics, chemistry, and
medicine, awarded for work related to NMR.
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1 Objectives

1. Understand the basics of NMR spectroscopy, its advan-
tages and limits. Familiarize with the concepts of ro-
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tating frame, transient response, radio-frequency pulse,
resonant circuit, spin echo, etc.

2. Understand the concept of magnetic resonance and ap-
ply it to the case of nuclear spins in a magnetic field.
Observe and interpret the NMR FID signal in a typical
sample. Learn how to determine the 90◦ pulse length.

3. Learn how Fourier transform NMR works and how sig-
nal averaging is used to reveal the weak NMR signal.
Estimate the amplitude of the induced voltage in a typi-
cal NMR experiment [3].

4. Understand the role of field gradients and how they can
be used for imaging purposes. What determines the small-
est gradient which can be used? Is field homogeneity im-
portant in this case and why?

2 Introduction

2.1 The history of NMR

The method of magnetic resonance was initially developed
by I. Rabi in 1937 in order to measure the magnetic moment
of neutron and, consequently, the moment of other nuclei. At
that time molecular beams were used, which were made to
deflect in an inhomogeneous magnetic field (after irradiation
with a high-frequency signal). In this (rather complicated)
way, the first nuclear-spin transitions could be detected.

The first magnetic resonance experiments in the solid
state were carried out by E. Zavoisky, who could observe
a strong electron-spin resonance (ESR) absorption in many
paramagnetic salts.

The first nuclear-spin magnetic resonance (NMR) ex-
periments in liquids and solids (water and paraffin, respec-
tively), were carried out for the first time by Purcell, Torrey
and Pound, as well as by Bloch, Hansen and Packard (both
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in 1946). In 1952 Bloch and Purcell were awarded the Nobel
prize for their ground-breaking work.

Already the early experiments in liquids hinted at the
possibility that the method could detect even the slightest
changes in the chemical environment of the probe nuclei,
making NMR one of the preferred tools by the chemists.

The year 1966 marked another milestone in the history
of NMR, when Anderson and Ernst managed to significantly
improve the sensitivity of the method by the use of pulsed
excitation and subsequent Fourier transform. This so-called
Fourier-transform (or pulsed) NMR is currently the most
common measurement method.

Finally, in 1973, Paul Lauterbur first and Peter Mansfield
later, achieve the first images using the magnetic resonance
imaging (MRI). Their discovery is awarded the Nobel prize
in Medicine in 2003.

2.2 The measuring method

NMR is a highly developed, microscopic investigation tech-
nique, whereby the atomic nuclei of the substance being in-
vestigated act as its own probes. These probes interact with
their environment (as, e.g., electrons, crystal fields, neigh-
bouring nuclei, paramagnetic impurities, etc.), with conse-
quent changes in their resonance frequency. By means of an
NMR spectrometer this spectrum can be measured, then an-
alyzed, and finally conclusions about the specific properties
of the investigated substance can be drawn. NMR is capable
of delivering information at an atomic scale. Since differ-
ent types of interactions superimpose (which usually makes
it difficult to observe the minor effects) new, refined NMR
measurement methods have been and are being developed.

Currently, NMR is an established technique in many dif-
ferent fields, ranging from solid-state physics, to chemistry,
biology, medicine, agriculture, archaeology, geology, etc.
This implies a huge mass of books and publications on NMR,
making the access to the technique rather overwhelming for
the newcomer. Some of the most known textbooks are re-
ported in the final bibliography.

3 Basics of NMR

3.1 The nuclear magnetic dipole moment

Most atomic nuclei have a magnetic dipole moment, µ , due
to their nuclear angular momentum J.

J = h̄I (1)

where I is the nuclear spin, I the spin quantum number (in-
teger or half-integer), and h̄ is the reduced Planck constant.
Depending on the number of protons and neutrons in the nu-
cleus, the nuclear spin quantum number can vary.

Table 1 Nuclear symmetry and spin.

Nucleus Spin Examples

even-even I = 0 I = 0: 12C, 16O
odd-odd I ̸= 0, integer I = 1: 2H, 6Li, 14N
odd-even I ̸= 0, half-integer I = 1/2 : 1H, 13C, . . .

I = 3/2 : 23Na, 35Cl, . . .

The total angular momentum value is J = h̄
√

I(I +1), while
its maximum component is h̄I. In the nucleus the angular
momenta of protons and neutrons combine to the total an-
gular moment J, which gives rise to the nuclear magnetic
moment

µ = γJ = γ h̄I = gI µNI, (2)

where γ is the gyromagnetic ratio, gI the nuclear g-factor,1

and µN = eh̄/2mp = 5.05×1027 Am2 the nuclear magneton.
The gyromagnetic ratios γ for different nuclei are known
and tabulated. Differently from the excited states of atoms,
which lie 1–100 eV above the atomic ground state, the ex-
cited states of a nucleus lie 0.01–10 MeV above the nuclear
ground state. Therefore, at all effects the nuclear γ values
are fixed and refer to the ground state of the nucleus. No-
tice that, although the proton and the neutron have the same
spin-angular momentum as the electron, h̄/2, their magnetic
moments are far smaller since mp = mn = 1836me.

3.2 Nuclear magnetization

When a collection of nuclear spins2 I, is placed in a static
magnetic field B0, the originally coinciding energy levels
split into (2I + 1) distinct and equidistant states (nuclear
Zeeman effect). The new levels, Em = −mh̄ωL, with ωL =
γB0 the Larmor precession frequency (see Sec. 7), depend
on the applied field B0 and on the magnetic quantum num-
ber m [m =−I, −(I −1), . . . , I −1, I].

In thermal equilibrium the different m-sub-levels are pop-
ulated according to the Boltzmann distribution

P(Em) ∝ exp(−Em/kBT ). (3)

Since the (2I + 1) energy states have different populations,
on average each nucleus has a non-zero magnetic polariza-
tion:

⟨Iz⟩=

I

∑
m=−I

m exp
(
− Em

kBT

)
I

∑
m=−I

exp
(
− Em

kBT

) . (4)

1 For a nucleus g does not reflect the original meaning of the Landé
g-factor as a spectroscopic line splitting, since the combination of in-
trinsic and orbital momenta is not known.

2 Notice that often the nuclear spin is identified (although not cor-
rectly) with the nuclear magnetic moment.
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For nuclear magnetic moments (at not too low temperatures)
the energy splitting is tiny compared with the thermal en-
ergy, Em ≪ kBT , therefore, one can use the approximation
e−x ≈ 1− x. By substituting Em =−mh̄γB0 one obtains

⟨Iz⟩=

I

∑
m=−I

m
(

1+
γ h̄mB0

kBT

)
I

∑
m=−I

(
1+

γ h̄mB0

kBT

) . (5)

Since ∑I
m=−I m = 0, the first term in the numerator and the

second term in the denominator vanish, to obtain3

⟨Iz⟩=
γ h̄B0

kBT
∑m2

2I +1
=

γ h̄I(I +1)B0

3kBT
. (6)

The value of nuclear spin polarization ⟨Iz⟩ at room tempera-
ture (T ≈ 300 K) is quite small, e.g., for B0 = 1 T and I = 1,
γ h̄ = µN and

⟨Iz⟩=
2
3

µNB0

kBT
≈ 10−6. (7)

Despite the very small value of the latter, the unequal occu-
pation of m-levels is crucial in observing the nuclear mag-
netic resonance. In fact, the nuclear spin polarization ⟨Iz⟩
is closely related to the nuclear magnetization. The macro-
scopic magnetization M of the atomic nuclei in a sample
is the sum of the single moments µi in a volume V , hence
M = ∑i µi/V . By using Eq. (2), the expectation value of the
z-component of M in the direction of the applied field B0
has the following form:

Mz = ∑
i

µ i,z/V = Nγ h̄⟨Iz⟩, (8)

where N is the concentration of the nuclei. By substitut-
ing ⟨Iz⟩ from Eq. (6) one obtains the nuclear magnetization
value at thermal equilibrium:

M0 = N
γ2h̄2I(I +1)

3kBT
B0. (9)

On the other hand, one can express the macroscopic magne-
tization M0 by using the nuclear-spin susceptibility χN and
the magnetic field intensity H0 (= B0/µ0) as M0 = χNH0. A
comparison with the previous formula for M0 gives, there-
fore, the nuclear-spin susceptibility:

χN = µ0
Nγ2h̄2I(I +1)

3kBT
=

const.
T

(Curie law) (10)

3 ∑I
m=−I m2 = (2I +1)I(I +1)/3

4 Dynamics of an isolated spin — classical approach

Classically a magnetic dipole moment µ in an applied field
B experiences a torque D = µ ∧B. If it possesses also an-
gular momentum about the dipolar axis, i.e., µ = γJ, then it
will tend to precess about the instantaneous magnetic field.
Indeed, since D = dJ/dt, one has

dµ
dt

= µ ∧ (γB) (spin precession) (11)

Preferentially we use a rotating coordinate system, since there
the equation of motion is particularly simple.4

An arbitrary vector F(t) can be written in the form F(t) =
exFx + eyFy + ezFz, where ex, ey, ez and Fx, Fy, Fz are func-
tions of time.

B( ) =t B0

µ
α

z

Fig. 1 When the field B is constant the angle α is constant, too.

Let a coordinate system rotate with an angular velocity Ω :

dex

dt
= Ω ∧ ex;

dey

dt
= Ω ∧ ey;

dez

dt
= Ω ∧ ez; (12)

The time derivative of an arbitrary vector F(t) can then be
written as

dF
dt

=
δF
δ t

+Ω ∧F (13)

where, by definition

δF
δ t

:= ex
dFx

dt
+ ey

dFy

dt
+ ez

dFz

dt
, (14)

with
δ
δ t

representing the time derivative in the rotating sys-
tem. For the equation of motion (11) this gives

dµ
dt

=
δ µ
δ t

+Ω ∧µ = µ ∧ (γB) (15)

δ µ
δ t

= µ ∧ (γB+Ω) (16)

4 A derivation of the equation of motion in a rotating frame of ref-
erence by means of linear algebra can be found, e.g., in Ref. [13].
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From the last equation it is clear that µ moves in the rotating
system as it does in the laboratory system, except that B

must be replaced by the effective field Beff = B+
Ω
γ

.

If B = B0ez, one can choose Ω =−γB0ez, so that Beff =

0 and, therefore,
δ µ
δ t

= 0. The rotation frequency γB0/2π is
known as the Larmor frequency.

Independent of the evolution in time of B(t), the magni-
tude of µ is a constant of motion. Indeed, from the equation

of motion (11) it follows that µ ⊥ dµ
dt

from which one has

d
(
µ2

)
dt

= 2µ
dµ
dt

= 0. (17)

5 Classical treatment of the variable-field effects

B0 = (0,0,B0); B1(t) = (2B1 cosωt,0,0), where B1 is ob-
tained through the superposition of two fields, one left- and
one right-rotating, B1l and B1r, respectively.

B1l +B1r = B1
(
eL

x cosωt + eL
y sinωt

)
+ B1

(
eL

x cosωt − eL
y sinωt

)
, (18)

where the upper index L indicates the laboratory system,
whereas the absence of an index indicates the rotating sys-
tem. From now on we will consider only one of the ro-
tating components and denote its angular speed with ωz,
which can be of either sign.5 With this notation we have
B1(t) = B1 (cosωzt,sinωzt,0).
The equation of motion of spin (11) can now be written

dµ
dt

= µ ∧ γ [B0 +B1(t)] . (19)

In the rotating frame system, which rotates with ωz around
the z-axis, one can write

δ µ
δ t

= µ ∧ [ez (ωz + γB0)+ exγB1] (20)

and, if we choose ωz =−ω , then

δ µ
δ t

= µ ∧ γ
[

ez

(
B0 −

ω
γ

)
+ exB1

]
= µ ∧ (γBeff) (21)

with Beff = ez

(
B0 −

ω
γ

)
+ exB1.

5 This is allowed since the sense of rotation can be fixed also a pos-
teriori.

Beff

0
x

z = zL

µ

− ω/γB

B1

0

Fig. 2 Precession of the nuclear magnetic moment µ around Beff in
the rotating frame of reference.

In the rotating frame µ precesses around Beff (see Fig. 2).
The z-component of µ moves up and down, although no en-
ergy is being absorbed. Therefore, the sign of (B0 −ω/γ)
can be either positive or negative.

In resonance, i.e., for ω = γB0, the k-component of Beff
vanishes. Hence, in this case Beff =B1 and the rotation angle
of µ is α = γB1tp, where tp is the duration of a pulse of the
additional field B1(t).

In deriving Eq. (21) in the rotating frame of reference,
the component rotating at 2ω was ignored. This can be done
since the effects related to the 2ω-term can be safely ne-
glected. Classically, this can be understood by considering
that the 2ω-term vibrates almost at Beff with a high fre-
quency 2ω , but with a very small amplitude (since B1 ≪B0).
On average, therefore, the effect of this term can be ne-
glected.

Observation of NMR

The above considerations suggest a very simple method for
observing the nuclear magnetic resonance (NMR). One can
insert the material to be investigated in a coil, whose axis is
orthogonal to the B0 field. In thermal equilibrium, a macro-
scopic magnetization will build up along the direction of the
applied field. By applying an alternating voltage with fre-
quency ω for a duration tp one can generate an alternating
field B1 orthogonal to B0. By an appropriate choice of B1
and tp it is possible to rotate the magnetization by an an-
gle α = 90◦, so as to bring it perpendicular to B0. In this
case, the magnetization will precess with the frequency γB0
around B0 thus generating an alternating magnetic flux in
the coil. The resulting induced voltage (Faraday law) can
then be amplified and observed.

According to the above presentation, the NMR signal
would last forever. However, the interactions of the nuclear
spins with their environment will gradually damp the signal
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which, therefore, is appropriately named free induction de-
cay, FID (here “free” means in the absence of the exciting
B1 field). Typical decay times of the FID are from some ms
to some seconds in liquids, but only ca. 100 µs in solids.

6 Bloch equations

Bloch found that the motion of macroscopic nuclear mag-
netization M in a magnetic field B can be described phe-
nomenologically by a set of differential equations. The start-
ing point for writing the Bloch equations is the classical
motion of a magnetic dipole in a magnetic field. Since the
macroscopic magnetization M is the sum of nuclear mag-
netic dipole moments, from Eq. (11) one can write

dM
dt

= γ (M∧B) . (22)

The laboratory system has {eL
x , eL

y , eL
z } as basis vectors and

{xL, yL, zL} as vector components, while for the rotating sys-
tem these are {ex, ey, ez} and {x, y, z}, respectively, with
eL

z ∥ez (we choose B parallel to eL
z direction). In thermal

equilibrium the magnetization and the magnetic field are
parallel to each other. Hence, the equilibrium magnetization
contains only one component, Mz = M0.

Every system tends to reach an equilibrium state. If one
assumes that the speed with which this state is reached is
proportional to the deviation from the equilibrium, then this
assumptions implies the following Bloch equations

dMxL

dt
= γ (M∧B)xL

− MxL

T2
dMyL

dt
= γ (M∧B)yL

−
MyL

T2
(23)

dMzL

dt
= γ (M∧B)zL

+
M0 −MzL

T1

or in vectorial form

dML

dt
= γ (M∧B)L −

MxeL
x +MyeL

y

T2
− Mz −M0

T1
eL

z . (24)

T1 represents the so-called longitudinal relaxation time,
known also as the spin-lattice relaxation time. It is a measure
of how fast the energy is exchanged between the nuclear
spin system and its surroundings, the so-called lattice. In
solids T1 can have very different values, from some µs up to
thousands of seconds.

T2 is known as the transverse relaxation time or spin–
spin relaxation time. It describes how fast the transverse
components of the nuclear magnetic moments de-phase. One
of the main reasons why in solids the nuclear-spin ensemble

loses its phase coherence is the nuclear dipole interaction. In
this case, one can roughly estimate T2 by using:

1
γBlocal

≃ 4πr3

µ0γ2h̄
≈ 100 µs. (25)

6.1 Solution of Bloch equations for small B1 fields

We consider now a frame system {x,y,z} rotating with an
angular speed −ω around B0 ∥eL

z ∥ez and choose B1 ∥ex.
The magnetic induction in the rotating frame is then Beff =

(B1,0,h0), with h0 = B0 − ω/γ . By substituting the field
components in the Bloch equations (24) one obtains:

dMx

dt
= γMyh0 −

Mx

T2
dMy

dt
= γ (MzB1 −Mxh0)−

My

T2
(26)

dMz

dt
= −γMyB1 +

M0 −Mz

T1

In a stationary state one can write that
dMz

dt
= 0, from which

it follows that My =
M0 −Mz

γB1T1
. When B1 → 0, both My and

Mx should in any case vanish, i.e., M0 −Mz should tend to
zero faster than B1. However, since B1 has to be small, one
can substitute Mz with M0 in the second of Eqs. (26), which
simplifies significantly the solution of the equations. Fur-
ther, by introducing the terms M+ := Mx + iMy and α :=
1/T2 + iγh0 the first two equations can be written:

dM+

dt
=−αM++ iγM0B1 (27)

whose solution is

M+ = Ae−αt +
iγM0B1

1/T2 + iγh0
(28)

Since we are interested in a stationary solution, the first
term in Eq. (28) can be neglected, as it represents a (time-
decaying) transient. Then, by using M0 = χ0B0/µ0, and ω0 =
γB0 one finally obtains

M+ =
iγ(χ0/µ0)B0B1T2

1+ iT2(ω0 −ω)

Mx =
χ0

µ0
ω0T2

(ω0 −ω)T2

1+(ω0 −ω)2T 2
2

B1 (29)

My =
χ0

µ0
ω0T2

1
1+(ω0 −ω)2T 2

2
B1

Mx, My and Mz do not depend on time in the rotating
frame system, implying the same for the macroscopic mag-
netization there. In the fixed laboratory system {xL,yL,zL},
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however, they rotate with an angular speed ω . In a typical
experiment we observe this rotating magnetization, which
induces a voltage in a fixed coil in the laboratory system. If
the coil is oriented, e.g., along the xL-direction, then we can
calculate the oscillating magnetization component along xL

MxL(t) = Mx cosωt +My sinωt (30)

The alternating magnetic field applied to the coil (now de-
scribed as an H-field) is

HxL(t) =
2B1

µ0
cosωt = 2H1x cosωt (31)

Since MxL and MyL are proportional to B1 and, hence, also to
H1x, we can write Eq. (30) as

MxL(t) =
(
χ ′ cosωt +χ ′′ sinωt

)
H1x. (32)

By a comparison with Mx and My from Eq. (29) we obtain:

χ ′(ω) =
χ0

2
ω0T2

(ω0 −ω)T2

1+(ω0 −ω)2T 2
2
= K

η
1+η2 (33)

χ ′′(ω) =
χ0

2
ω0T2

1
1+(ω0 −ω)2T 2

2
= K

1
1+η2 , (34)

where K =
χ0

2
ω0T2 and η = (ω0 −ω)T2. These resonance

line shapes are known as Lorentzian lines (see Fig. 3).
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Fig. 3 Real χ ′(ω) and imaginary χ ′′(ω) parts of the susceptibility.

The relation between MxL and the applied field HxL(t)
can be conveniently written in a complex form. By using
Mc

xL
(t)= χHc

xL
(t), where χ = χ ′−iχ ′′ and Hc

xL
(t)=H1xL eiωt ,

one obtains

MxL(t) = Re
{

χH1xL eiωt} (35)

Better yet, one can consider χ as a tensor, which implies
that, e.g., one can obtain a magnetization component along

the ey-direction even by applying a magnetic field along the
ex-direction. Hence, generally we can write:

Mc
α(t) = χαβ Hβ0 eiωt , where α, β = xL, yL, zL. (36)

The deduced χ values of interest to us are χxLxL (the contri-
bution from χ in the (xy)L-plane remains constant, |χxLxL |=
|χxLyL |).

Although the relation between magnetization and the ap-
plied field was obtained via the Bloch equations, the depen-
dence itself is quite general. Indeed, every resonance phe-
nomenon is characterized by a complex susceptibility, which
expresses the same relation between excitation and response.

Let us now consider the power absorbed by the nuclear
spins. We have a coil filled with material on which we ob-
serve nuclear magnetic resonance. The coil inductivity is
L = µL0 with µ = 1+ χ(ω) and the impedance Z = iωL+
R0 = iωL0(1+ χ ′) +ωL0χ ′′ + R0. The relative change of
resistance, caused by the material in the coil, is therefore

∆R
R0

=
ωL0

R0
χ ′′ = χ ′′Q. (37)

Here Q is the quality factor of the empty coil. In the absence
of a sample the maximum energy stored in the coil is

1
2

L0i20 =
µ0H2

1
2

V =
B2

1
2µ0

V. (38)

Nuclear spins absorb on average the power P:

P =
1
2

i20∆R =
1
2

i20L0ωχ ′′ =
B2

1
2µ0

χ ′′V (39)

This relation associates in a simple way the absorbed power,
the susceptibility χ ′′, and the applied field. Later on we will
use it as a starting point for calculating χ ′′ at a microscopic
level, since the absorbed power can be calculated by means
of the transition probability. If χ ′′(ω) is known, then also
the other term χ ′(ω) is known. This is because both of them
are related via the very generally valid Kramers-Kronig re-
lations (here P represents the principal value of a function):

χ ′(ω)−χ ′(∞) =
1
π

P
∞∫

−∞

χ ′′(ω ′)

ω ′−ω
dω ′, (40)

χ ′′(ω) = − 1
π

P
∞∫

−∞

χ ′(ω ′)−χ ′(∞)

ω ′−ω
dω ′.
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7 Simple resonance theory — quantum-mechanical
approach

Let us consider first the quantum mechanical description of a
nuclear magnetic moment in an external field B. The Hamil-
tonian operator is:

H =−µ ·B =−γ h̄I ·B. (41)

By considering B along the z-axis, B = (0,0,B0), it follows

H =−γ h̄B0Iz =−h̄ω0Iz. (42)

The energy eigenvalues of H are Em =−h̄ω0m. We obtain
therefore 2I+1 equidistant energy levels, each ∆E = h̄ω0 =
γ h̄B0 apart from the other (see Fig. 4).

−3/2

−1/2

1/2

3/2

E∆

E∆

E∆
m =

Fig. 4 Energy levels of a nuclear spin I = 3/2 in a magnetic field.

To observe the resonance we need an interaction capable of
promoting transitions between the different energy levels.
Because of the energy-conservation law, this interaction has
to be time-dependent with an angular frequency ω such that
h̄ω = ∆E = nh̄ω0. Moreover, the interaction should have a
non-vanishing matrix element which connects the initial and
the final states. Usually an oscillating magnetic field B1(t)⊥
B0, with B1(t) = (B1 cos(ωt),0,0) is used. Its Hamiltonian
operator can then be written:

H =−γ h̄B1Ix cos(ωt). (43)

Since ⟨m|Ix|m + 1⟩ ̸= 0, we can only have transitions be-
tween neighbouring levels, i.e., h̄ω = ∆E = h̄ω0 and hence
ω = γB0. Since Planck’s constant does not appear in the res-
onance relation, it suggests that the same result should still
be valid also in a classical approach.

A simple classical picture can help us estimate the order
of magnitude of γ . Let us consider a particle with mass m
and charge e, which circulates with a period T on a circular
path with radius r.

The angular momentum of the particle is J = mvr = m
2πr2

T
and it gives rise to a circular current i =

e
T

. For the mag-

netic dipole moment one has µ = iπr2 =
eπr2

T
, from which

we obtain the gyromagnetic ratio: γ =
µ
J
=

e
2m

.

In general, a large mass implies a small magnetic dipole mo-
ment. From ω = γB0, in an applied field B0 = 1 T we have:

ω(Electron Spin Resonance)︸ ︷︷ ︸
10 GHz

≫ ω(NMR)︸ ︷︷ ︸
10 MHz

(44)

8 Energy absorption and spin-lattice relaxation

For the sake of convenience, in the following let us consider
I = 1/2. One can write:

H =−µ ·B=−γ h̄B0Iz, Em =−h̄ω0m and ω0 = γB0.

W+− W−+ ωh 0

−1/2

1/2m =

−

N+

N

Fig. 5 Quantum transitions in a nuclear spin-1/2 system.

If the occupation numbers for the energy levels are N+ and
N− and the transition probabilities W−+ and W+−, respec-
tively (see Fig. 5), then the rate of change of the occupation
number N+ is

dN+

dt
= N−W−+−N+W+− (45)

If we suppose now that an external perturbation Hpert ∝
B1 cos(ωt) acts on the system, it will induce transitions be-
tween the energy levels. The transition probability between
two such states can be calculated by means of the Fermi’s
golden rule:

W+− =
2π
h̄

∣∣⟨−|Hpert|+
⟩∣∣2 δ (E+−E−− h̄ω)︸ ︷︷ ︸

Energy conservation

∝ B2
1 (46)

Since
∣∣⟨−|Hpert|+

⟩∣∣2 = ∣∣⟨+|Hpert|−
⟩∣∣2, then W+−=W−+=:

W and, consequently

dN+

dt
=W (N−−N+). (47)

By introducing n = N+ −N− and N = N+ +N−, we have
N+ = 1

2 (N +n) and N− = 1
2 (N −n), from which we obtain:

dN+

dt
= −Wn (48)

dN−
dt

= +Wn

and consequently
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(
dn
dt

)
HF

=−2Wn (49)

whose solution is n(t)= n(0)exp(−2Wt), with limt→∞ n(t)=
0. Hence, the resulting energy absorption is:

dE
dt

= N+Wh̄ω −N−Wh̄ω = h̄ωWn. (50)

As n goes towards zero with time, the energy absorption will
gradually cease and no resonance would be observed.

If a piece of material is brought into a static magnetic
field (or taken out of it) without applying any oscillating
magnetic field (W = 0), the material will be magnetized or
demagnetized, respectively. According to the last equation
this would not be possible, since for W = 0 also dN+/dt =
dN−/dt = 0, hence no change in the occupation numbers
would be possible.

However, the process of (de)magnetization requires tran-
sitions between the energy levels, i.e., the spin system should
be coupled to a thermal reservoir with which it can exchange
energy. The ratio N0

−/N0
+ reflects the temperature of the ther-

mal bath, since

N0
−

N0
+

= exp
(
− ∆E

kBT

)
= exp

(
− h̄ω0

kBT

)
. (51)

We should postulate a mechanism which can induce transi-
tions between the energy levels. We indicate by W↑ the prob-
ability of the +→− transition and by W↓ that of the −→+
transition.
We have then dN+/dt =N−W↓−N+W↑. Since in a stationary
state dN+/dt = 0, it follows that

N0
−

N0
+

=
W↑
W↓

=⇒
W↓
W↑

= exp
(
+

h̄ω0

kBT

)
. (52)

Before we had W+− = W−+. How it is that now W↑ ̸= W↓?
This apparent paradox can be solved by taking into account
that a thermal transition in a spin system does not require
only a coupling to the thermal bath, but also the existence of
energy states (of the bath) that allow such a transition. The
transition rate, therefore, will depend not only on the matrix
element of the perturbation, but also on the probability that
the reservoir is in a state that allows such a transition (see
Fig. 6).

Since in a stationary state N1NbW1b→2a = N2NaW2a→1b
and from quantum mechanics it is known that W2a→1b =

W1b→2a, we have

N1

N2
=

Na

Nb
=

W↑
W↓

, where
{

W↑ = NaW2a→1b
W↓ = NbW1b→2a = NbW2a→1b

Na

Nb

a

b

1

2

N1

N2

1

2

N1

N2

a

b

Nucl. spin Nucl. spinReservoir Reservoir

Allowed Forbidden

Fig. 6 A thermal transition in the spin system can take place only if
the heat reservoir can absorb the released energy.

The rate of change of the occupation numbers can be written
as:

dN+

dt
= N−W↓−N+W↑ and

dN−
dt

= N+W↑−N−W↓ (53)

and, hence:

dn
dt

= 2N−W↓−2N+W↑ = N(W↓−W↑)−n(W↓+W↑). (54)

With the newly defined quantities

n0 := N
W↓−W↑
W↓+W↑

and
1
T1

:=W↓+W↑

the final result is

(
dn
dt

)
thermal

=
n0 −n

T1
. (55)

Here T1 represents the spin-lattice relaxation time, which
we already know from the Bloch equation, while n0 is the
difference in the occupation numbers at thermal equilibrium.
The solution of the above differential equation is

n(t) = n0 +A · exp
(
− t

T1

)
. (56)

By including now the effects of both the high-frequency
field (49) and that of the thermal processes (55) we obtain:

dn
dt

=

(
dn
dt

)
HF

+

(
dn
dt

)
thermal

=−2Wn+
n0 −n

T1
(57)

In a stationary state (dn/dt = 0) we have that n =
n0

1+2WT1
which, for 2WT1 ≪ 1, implies n ≈ n0.
The absorbed power can finally be calculated as

dE
dt

= nh̄ωW = n0h̄ω
W

1+2WT1
, (58)

where W ∝ B2
1 [see Eq. (46)]. For W > 1/(2T1) we observe

a saturation. From the behaviour of saturation one can esti-
mate the spin-lattice relaxation time T1, which depends on
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microscopic process in the material. The absorption rate is
related to W . An estimate of the resonant absorption is es-
sential in establishing whether the resonance can be observed
or not.

The energy levels are not perfectly sharp. Additional in-
ternal fields always present in matter will broaden the levels
and, hence, the resonance line. The study of line widths pro-
vides further crucial information on the microscopic proper-
ties of the investigated substance.

9 Fourier-transform nuclear magnetic resonance

By applying a high-frequency magnetic field B1, the mag-
netization can be tipped away from the initial ez direction.
The particular case, in which B1 has exactly the Larmor fre-
quency, is shown in Fig. 7 (left panel). In this case, Beff =
B1 and the magnetization (in the rotating frame) precesses
around the ex-axis. The precession angle is α = γB1tp, with
tp the HF pulse duration. It is clear, that by choosing the
pulse duration one can obtain any HF precession angle.

f(t)

t

90
oM

0

B
1

y

z

x

Fig. 7 90◦ pulse for the case when B1 is irradiated at the Larmor fre-
quency (left) and the subsequent free-induction decay (right).

For technical reasons the amplitude B1 of the RF pulse is
considerably smaller than that of the static field B0. It can be
shown that this does not represent an important constraint as
long as

γB1 ≫∆ω (= spectral width) and γB1 ≫|ω−ω0| (59)

or, equivalently, that the pulse duration tp is chosen so that

tp ∆ω ≪ 1 and tp(ω −ω0)≪ 1. (60)

These conditions have the following meaning:

tp∆ω ≪ 1: In the rotating system the magnitude of Beff is
the same for all the components of magnetization over
the whole spectral range ∆ω , i.e. they will be rotated by
the same angle.

tp(ω −ω0)≪ 1: The phase error remains possibly small.

After a 90◦ pulse the magnetization, initially pointing along
the ez direction, will point in the ey direction. Once the RF
field is switched off, the magnetization will precess freely in
the (xy)L plane and gradually will revert to its initial equi-
librium state by means of T1- and T2-relaxation processes.
This so-called free induction decay, FID, is shown in Fig. 7
(right panel).

To observe the precession of the macroscopic magneti-
zation we use a fixed receiving coil, which is used also for
exciting the sample. To estimate the voltage induced in the
receiving coil we use the same expressions employed for
the continuous RF field (Bloch equations). There is, though,
an essential distinction between this and the continuous RF-
field method: while in the latter the single resonance lines
are scanned consecutively by varying the RF frequency (or,
equivalently, the B0 field value), in the pulsed NMR method
the different precession frequencies are observed simultane-
ously. Nowadays, pulsed NMR is practically the only method
in common use.

If the nuclei in the sample sense different static fields (as
the sum of a constant external field B0 with different inner
fields), also Beff, the effective field in the rotating system,
will differ according to the nucleus location. Only for cer-
tain fraction of nuclei Beff = B1 and only these nuclei will
rotate by exactly 90◦ during tp. The other nuclear spins will
not end up in the (xy)L and will only partially contribute to
the free induction decay signal. In order that all nuclei fully
participate to the FID, the condition |ωL −ω| ≪ γB1 must
be satisfied. This means that the angle between Beff and B1
should be quite small.

By performing a Fourier transform of the time-domain
spectrum one obtains the underlying frequencies and their
line widths (see Fig. 8). Since in pulsed NMR one works in
the frequency domain, the technique is commonly known as
Fourier–Transform–NMR (FT–NMR).

t

U(t)

Frequency h

U(h)

FT

Fig. 8 NMR signal in time domain and its absorption spectrum in the
frequency domain, as obtained by a Fourier transform.

The simultaneous observation of several NMR lines is
very advantageous in terms of statistics. In fact, differently
from the continuous case, in pulsed NMR much more infor-
mation can be collected in the same amount of time. How-
ever, the crucial advantage of pulsed NMR consists in its
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multiple application possibilities, achievable through the use
of specific pulse sequences (multi-pulse methods). As an ex-
ample, in the following section we will discuss the spin-echo
method.

9.1 Instrumentation for the FT-NMR method

In a complex NMR spectrum with many resonance lines
the FID signal consists of a sum of oscillating components
MxL(t), which decay over time due to line broadening pro-
cesses. Generally, the width of the spectrum is small com-
pared to the Larmor frequency ω0. If one had to acquire and
record directly the MxL(t) signals, the required electronics
would have to be very fast in order to handle frequencies
ω/2π that can reach many hundreds of MHz. Since this kind
of electronics is either not available or too expensive, a very
elegant solution, the so-called mixing technique has been
adopted. Its key advantage consists in reducing the high-
frequency signals (via mixing) to low-frequency ones, while
still preserving the signal’s phase relationships.

The operation of a mixer (known also as signal multi-
plier) can be understood without entering into the details of
its inner components, based on the following schematics:

IN OUT

REF

Input signal Output signal

Reference

signal

Vref = VR cos(ωRt + θ)

Vout ∝ VS cos[(ωS − ωR)t]Vin = VS cos(ωSt + φ) Mixer

Fig. 9 Schematic representation of a mixer used for down-converting
high-frequency signals. Inset: conventional diagram of a mixer.

Here we have:

Vin(t) =VS cos(ωSt +φ) =VS(cosφ cosωSt − sinφ sinωSt),

Vref(t) =VR cos(ωRt +ϑ). (ϑ is set by the user)

The output voltage, Vin ·Vref, will then be:

Vout(t) = kVs cos[(ωS −ωR)t +φ −ϑ ]. (61)

which, by choosing ϑ = 0, becomes equivalent to Vin(t):

Vaus(t) = kVs cos[(ωS −ωR)t +φ ] (62)

There is still some uncertainty whether ωS <ωR or ωS >ωR,
since the cosine function does not depend on the sign of its
argument.6

6 This ambiguity can be removed by using another mixer where a
second, 90◦ phase-shifted reference signal gives an output

Vout(t) = kVs sin[(ωS −ωR)t +φ]

The individual parts of the current NMR spectrometer
are shown schematically in Fig. 10. Their functionality and
mode of operation are described in detail in the technical
manual of the spectrometer. Here we mention only about the
dual role of the oscillator. On one hand, in transmit mode,
the oscillator defines the frequency of the alternating mag-
netic field B1 during the RF pulse generation. On the other
hand, in receive mode, the oscillator defines the frequency
of the reference signal Vref(t), which is used by the mixer
for down-converting the NMR FID signal.

OUTPUT

AMPLIFIER

DETECTION

RECEIVER

TRANSMITTER

TRIGGER OUT

+
GATEPROBE

HEAD

PULSE PROGRAMMER

OSCILATOR

DIODE PHASE

FILTER

GRADIENT

MAGNET

ϕ

Fig. 10 Block diagram of the NMR spectrometer.

By recording both output signals, with ϑ = 0 and ϑ = − π
2 , respec-

tively, one can determine the sign of (ωS −ωR) as well as the phase
angle φ . This data acquisition technique is known as quadrature detec-
tion.
When the two above phases can be set to the absolute ϑ = 0 and ϑ =
− π

2 values, resp., then the output signal of the cosine (sine) channel
will correspond to the absorption (dispersion) NMR signal.
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9.2 Pulsed NMR methods

9.2.1 The spin-echo method

In many cases, the decay in time of the transverse magneti-
zation after a 90◦ pulse is strongly influenced by magnetic
field inhomogeneities, i.e., by the fact that the local magnetic
field at different nuclear sites can vary considerably.

90
o

MB
1

y

z

x

y

z

x

Fig. 11 The macroscopic magnetization M after a 90◦ pulse fans-out
due to inhomogeneous internal and externally-applied fields.

This field variations can have external causes, related
to inhomogeneities of the applied field, but they can also
reflect inner inhomogeneities, for instance, due to dipolar
fields from neighbouring nuclei. After a 90◦ pulse the spins
precess with slightly different frequencies and, with time,
progressively de-phase. The macroscopic magnetization of
the spin ensemble fans-out (Fig. 11 depicts the situation in
the rotating frame) with the observable result of a decaying
signal (whence the name free induction decay). These ef-
fects, provided they stay constant in time, can be eliminated
by using the spin-echo method.

90
o

180
o

FID

Echo t

c c

Fig. 12 Schematic representation of a spin-echo sequence.

The basic idea behind the spin-echo method is shown in
Fig. 12. At a certain time τ after a first 90◦ pulse one applies
a second 180◦ pulse. This reverts all spin orientations, which
then tend to refocus. After a time 2τ from the initial pulse all
spin are again in phase, i.e., the macroscopic magnetization
is fully recovered and one obtains an NMR signal, the so-

called spin-echo. On the other hand, when at the time 2τ the
nuclei being studied have left their original positions and are
found in other regions of the inhomogeneous field or, when
during the time 2τ the local field at a given nuclear site has
changed, then the spins do not refocus any more after a spin-
echo sequence. In this case, depending on the importance of
such effects, one obtains only a weak echo or even no echo
at all. By employing the spin-echo method it is possible to
separate the interesting intrinsic effects from those trivially
related to the applied-field inhomogeneities and investigate
them in detail.

9.2.2 Inversion-recovery pulse sequence

The longitudinal spin-lattice relaxation time T1 can be eas-
ily measured by means of a simple 180◦–90◦ inversion pulse
sequence (see Fig. 13). In this case, the magnetization is ini-
tially inverted by means of a 180◦ pulse (after which there is
no observable NMR signal, since M does not have any trans-
verse, x- or y-components). Next, due to the spin-lattice re-
laxation, the magnetization approaches its equilibrium state.
When at different times τ a 90◦ pulse (also known as de-
tection pulse) is applied, it brings the magnetization in the
xy plane and allows the observation of an NMR signal. The
amplitude of the signal is proportional to the z-component of
the magnetization just before the detection pulse (see Fig. 14).

B1

y

z

x
B1

y

z

xMz

Mz

(a) (b)

Fig. 13 Inversion-recovery sequence: a 180◦ pulse is applied at t = 0
(a), then a 90◦ detection-pulse is applied at a variable t = τ (b).

c

Mz(c)

-M0

M0

Fig. 14 Evolution of the z-component of magnetization Mz(τ) after
applying a 180◦ pulse.
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From the Bloch equations, for the z-component of mag-
netization one can write

dMz

dt
=

M0 −Mz

T1
. (63)

By requiring that Mz(t = 0) = −M0 as an initial condition,
we obtain the following solution

Mz(t) = M0

[
1−2exp

(
− t

T1

)]
. (64)

It is useful to know that Mz(t = 3T1) ≈ 0.95M0 and Mz(t =
5T1) ≈ 0.993M0, i.e., after a time lapse of 5T1 the magneti-
zation almost fully recovers to its initial value.

10 Magnetic resonance imaging (MRI)

Since an RF pulse excites all the nuclei in a selected slice
of the sample, the received signal is a sum of the contribu-
tions from all the spins in that slice. It is clear that, to be able
to distinguish different parts of a sample, the spatial infor-
mation has to be encoded into the NMR signal. The easiest
way to achieve this, consists in using (linear) magnetic field
gradients. Indeed, by applying a fixed gradient Gx during
data acquisition, the information on position x is encoded
into the frequency of the signal: to higher field values will
correspond higher frequencies and vice versa:

ν = γ(B0 + xGx) = ν0 + γxGx. (65)

While in the absence of a gradient one would expect a single
line, in its presence the resonance frequency will be propor-
tional to the position of the spin. In addition, the intensity of
the signal at x will depend on the concentration of nuclear
spins there. Thus, tissue that contains a large amount of hy-
drogen, which occurs abundantly in the human body in the
form of water, will produce a high intesity signal (bright im-
age), whereas tissue that contains little or no hydrogen (e.g.,
bone) will appear black.

10.1 Back-projection imaging

This is one of the first (and simplest) forms of magnetic reso-
nance imaging to be used. In the back-projection technique,
the object is first placed in a magnetic field. Then a one-
dimensional field gradient is applied at several angles, and
an NMR spectrum is recorded for each angle. Once data has
been recorded, they can be backprojected through space in
computer memory (back-projection means a projection from
the spectrum towards the object). Finally, the background in-
tensity is suppressed and the artefacts are removed to obtain
a 2D image of the sample’s cross section. By combining sev-
eral different cross sections one can create a holographic 3D

image of the body under investigation. Sometimes the back-
projection scheme is called also inverse Radon transform.

Today, the sophistication of MRI is such that one can ac-
quire images in real time, allowing one to monitor the brain
activity under different conditions via the so-called func-
tional MRI.

11 Measurement program

1. Calibrate the RF pulse width π/2 by means of a spin-
nutation experiment. To this purpose, follow the evolu-
tion of the FID amplitude as a function of pulse duration
(in steps of 0.5 µs).
The maximum FID amplitude is achieved when α =
π/2. What is the field value B1 corresponding to the op-
timal pulse length?

2. Check the NMR signal both at exact resonance, as well
as slightly out of it (by changing the field B0). Compare
the FID time signals and the respective FFT spectra. In
what are they similar and in what they differ? What de-
termines the width of the frequency spectrum?

3. By using the inversion pulse sequence, estimate the spin-
lattice relaxation time T1 of protons in water. Note: For
a reasonably fast relaxation, instead of pure water, we
will use a 6.5× 10−4 mol/l MnSO4 solution containing
paramagnetic Mn2+ ions.

4. By using the spin-echo method, estimate the spin-spin
relaxation time T2 of protons in water. Repeat the exper-
iment in the presence of a small field-gradient. Are the
previous results still valid and why?

5. By means of the method of gradients (described in de-
tail in App. A), estimate the self-diffusion coefficient of
water molecules.
To this purpose two spin-echo measurements have to be
carried out. The first one using a fixed gradient ∂B0/∂ z,
but a variable delay τ and a second one using a variable
field gradient, but a fixed delay.
The magnetic field gradient should preliminarily be cal-
ibrated by using a special phantom sample.

6. Calibrate the field gradient by using the phantom sample
depicted in Fig. 16. Replace the phantom by a sample
lacking axial symmetry and acquire the 1H NMR spec-
tra at regular angular positions. Once the acquisition is
finished, use back-projection to reconstruct the image.
Does it resemble the real object? Estimate the spatial
resolution of your image and consider how it can be im-
proved.
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A Measurement of self-diffusion coefficient

As already explained in Sec. 9.2.1, inhomogeneity effects arising from
the externally applied field can be eliminated by the use of the spin-
echo method (see Fig. 12). The dependence of the echo amplitude on
time 2τ is given by:

M(2τ) = M0 exp
(
−2τ

T2

)
. (66)

However, things change when during the time 2τ the nuclei under in-
vestigation diffuse, thereby modifying their original locations. If the
magnetic field inhomogeneity (i.e., the ∂B0/∂ z gradient) is large and
the nuclear diffusion strong, then the time dependence of the echo am-
plitude is given by the modified formula

M(2τ) = M0 exp
(
−2τ

T2

)
exp

[
−
(

γ
∂B0

∂ z

)2 2
3

Dτ3

]
. (67)

Here D denotes the diffusion coefficient, as defined from the first Fick’s
law (for a quick introduction to Fick’s laws check the chapter on dif-
fusion in any thermodynamics book). The derivation of Eq (67) is de-
scribed in detail in App. G of Ref. [13].
If now the ∂B0/∂ z gradient is known, one can estimate the diffusion
coefficient D as the pre-factor to the τ3 term.

B Some technical data of NMR spectrometer

×10 ×100

4 72

×1

Fig. 15 Knobs to set the dis-
tance between pulses.

Setting the distance between pulses:
The time distance between pulses
τ can be set by means of the two
knobs shown in Fig. 15. The up-
per knob is used to continuously
change the time delay via its (arbi-
trary) three-digit display. The lower
knob instead acts as a multiplier for
the value already set with the upper
knob. Three possible multiplication
factors are available: ×1, ×10, and
×100. As expected, the time delay
depends linearly on the upper-knob
setting. However, due to unavoidable
inaccuracies, there is both a variable
offset and the coefficients do not scale by an exact factor of ten. The
table below reports the dependence of time delay on the knob settings.

Setting Time delay (ms)
×1 τ(S) = 1.264+0.038S
×10 τ(S) = 12.24+0.392S
×100 τ(S) = 109.1+3.763S (S ≤ 700)

4.60 ± 0.10

Fig. 16 Phantom sample
for calibrating the magnetic
field gradient.

Calibration of field gradient:
The magnetic field gradient ∂B0/∂ z
can be set (in arbitrary units) by
means of the relevant knob. To cali-
brate the gradient value we will use a
phantom sample made of plastic (see
Fig. 16). It consists of two capillaries
of 0.8 mm in diameter and 4.6 mm
apart. Both capillaries are filled with
silicon grease, a substance rich in hy-
drogen and, hence, easy to detect via 1H-NMR. When a magnetic field
gradient is applied to this special sample, the hydrogen nuclei in the
two capillaries will sense different fields and, consequently, will dis-
play different Larmor precession frequencies.

Frequency calibration on the LCD screen:
The time-domain NMR signals (FID and echo) are sampled at 512
equidistant intervals, digitized, and finally shown on the LCD screen
of the digital oscilloscope, whose time base is set at a certain value
T [s/cm]. However, not all the recorded points will be shown on the
10-cm wide LCD screen, but only the first 200 ones. The time resolu-
tion used to sample the signal is therefore:

∆ t = T
10

200
[s].

Despite the partial display of FID, its Fourier transform is calculated
using the whole time-domain signal, i.e., all the 512 sampled points.
This implies a frequency resolution of

∆ f =
1

512 ·∆ t
[Hz].

From the resulting Fourier spectrum, only the first 100 frequency points
will be displayed on the screen. Consequently, the required frequency
calibration factor (i.e., frequency base) will be given by

F =
100 ·∆ f

10
=

200
512

· 1
T [s/cm]

[Hz/cm].

C Biographic notes [17]

Edward Mills Purcell (1912–1997)

American physicist, professor at the
Massachusetts Institute of Technology
and Harvard University. His main do-
mains were relaxation phenomena and
magnetic properties in low tempera-
tures.

He received the Nobel prize to-
gether with Felix Bloch “for their de-
velopment of new methods for nuclear
magnetic precision measurements and
discoveries in connection therewith” in
1952. Besides NMR, Purcell is known
also for other scientific achievements,
such as the successful detection of the emission of radiation at 1421
MHz by atomic hydrogen in the interstellar medium. Each of these
fundamental discoveries has led to an extraordinary range of devel-
opments. NMR, for example, initially conceived as a way to reveal
properties of atomic nuclei, became a major tool for research in mate-
rial sciences, chemistry, and even medicine, where magnetic resonance
imaging (MRI) is now an indispensable tool. Radio spectroscopy of
atoms and molecules in space, following from the detection of the hy-
perfine transition in hydrogen as the first example, has become a major
part of the ever-expanding field of radio astronomy.

Purcell made also contributions in biophysics, astronomy, etc. He
was a very influential teacher and a valued advisor and consultant
throughout his professional life.

Felix Bloch (1905–1983)

Bloch was born in Zurich, Switzerland, and was educated at the Fed-
eral Institute of Technology and at the University of Leipzig, where
he obtained his PhD in 1928. He taught briefly in Germany and in
1933 moved to America, via various institutions in Italy, Denmark,
and Holland. In 1934 he joined the Stanford staff, remaining there un-
til his retirement in 1971 and serving from 1936 onward as professor
of physics. He also served briefly as first director of CERN in Geneva.
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In 1946, Bloch and Edward Purcell
independently introduced the technique of
nuclear magnetic resonance (NMR). This
was used initially to determine the mag-
netic moment of protons, but later on it de-
veloped into a powerful tool for the anal-
ysis of the more complex molecules of or-
ganic chemistry. In 1952 Bloch shared the
Nobel Prize for physics with Purcell for
their work on NMR.

Bloch worked extensively in the field
of solid-state physics developing a de-
tailed theory of the behaviour of electrons in crystals and revealing
much about the properties of ferromagnetic domains. He contributed
also to the domains of superconductivity, quantum electrodynamics
and the physics of neutrons.
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