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1 Shot noise [1]

Certain physical processes within a conductor cause noise to appear in the
current flow through the conductor. Some of these processes are inevitably
related to the transport of electronic charges such that they cannot be avoided
in principle. While the discontinuous emission of photons was investigated by
Campbell in 1909 [2], first attempts to understand electrical current noise were
made in 1918 by Walter Schottky on vacuum tubes [3]. In this experiment you
will use the vacuum tube depicted in Fig. 1 for generating noise. An examplary
of such vacuum tube is also present on the table of the VP experiment.

Figure 1: The vacuum tube used in this experiment for generating noise.

Schottky distinguished two types of noise:

• thermal noise. This contribution is often also called Johnson–Nyquist
noise, after the experimentalist M.B. Johnson and the theoretician H.
Nyquist, who studied thermal noise in detail [4, 5]. Today we know that
thermal noise is present in all electronic conductors at finite temperature.
It does not require a finite mean current to flow through the conductor,
but appears as current noise as soon as the two sides of the conductor
are connected. It is therefore an equilibrium phenomenon.

• shot noise. Shot noise (German: Schrotrauschen) arises because elec-
tronic charge is transported in quantized portions. Typically these por-
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tions have the size of the elementary charge |e|, but a few notable excep-
tions exist, e.g., Cooper pairs in superconductors (2|e|), or fractionally
charged quasiparticles in the fractional quantum Hall effect (e.g., |e|/3).
Shot noise arises only if a finite mean current is driven through a conduc-
tor and is therefore a nonequilibrium phenomenon. Shot noise does not
occur in all conductors. For example, in macroscopic metallic conduc-
tors shot noise is suppressed because the sample size exceeds the inelastic
electronic mean free path by orders of magnitude. Individual segments
of the material fluctuate independently and the mean noise amplitude
is strongly reduced by averaging. In systems, where the electronic mean
free path is comparable to the extent of the system, shot noise is of
importance.

At the time of Walter Schottky, shot noise could be observed and studied in
vacuum tubes. Shot noise can also be observed in vacuum photodiodes [6, 7].
In fundamental research today, shot noise gives important insights about the
correlated motion of electrons, which is due to the Pauli exclusion principle
or electron–electron interactions, in all kinds of nanoscale conductors, such as
quantum wires, quantum dots [1], and superconducting Josephson junctions.
It also plays a role in lasers.

Usually, in electronic transport measurements a constant voltage V is ap-
plied to the device under investigation, and a current I(t) is measured. The
time averaged current 〈I〉 (also called dc, meaning direct current) is

〈I〉 = lim
T→∞

1

T

∫ T

0
dtI(t). (1)

Fluctuations of the current in time around this average

∆I(t) = I(t)− 〈I〉 (2)

are called the noise current, or simply the noise. The time averaged current
noise is quantified by the mean square fluctuation amplitude

〈∆I2〉 = lim
T→∞

1

T

∫ T

0
dt∆I2(t). (3)

Walter Schottky found the expression

〈∆I2〉 = 2|e|〈I〉∆f, (4)

for the magnitude of the shot noise, known today as the Schottky formula.
In this equation, ∆f is the bandwidth of the apparatus used to measure the
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noise. The quantity S(ω) = S0 = 2|e|〈I〉 is the power spectral density of the
shot noise current.

According to eq. (4), shot noise provides the opportunity to determine the
elementary charge |e| from a measurement of the average current and the noise.
Already in 1924, Hull and Williams [8] used this approach with an error of
±2%. In 1952, Stigmark determined |e| with an error of ±0.4% [9]. With this
study, the experimental accuracy limit of the determination of |e| using shot
noise had been reached.

In this experiment you will be measuring the shot noise generated by a
vacuum tube. In such a tube individual electrons leave the heated cathode
electrode by thermionic emission. Electrons are emitted randomly and inde-
pendently. Each electron traveling ballistically from cathode to anode causes a
current pulse. The sum of the random and independent current pulses creates
the mean current and the noise. Using a resonant circuit as an impedance the
noise current is transformed into a noise voltage [see Fig. 2(a)]. This noise
voltage is then amplified and rectified. The rectification allows you to measure
the magnitude of the time averaged shot noise. Proper calibration of the setup
will allow you to determine 〈∆I2〉 and 〈I〉 giving access to the value of the
elementary charge |e|.

4



2 Apparatus and Instrumentation

The apparatus consists of

• the noise generator including the vacuum tube and the resonant circuit,

• the voltage amplifier used to amplify the voltage noise,

• the rectifier used to rectify the noise signal into a dc voltage,

• an ac-voltmeter for measuring the rms (root mean square) amplitude of
voltages.

You will also find auxiliary instrumentation for calibrating and analyzing the
measurement system, namely,

• a high-frequency oscillator,

• an LRC-bridge,

• an oscilloscope.

The noise generator. A simplified diagram of the electrical circuit in the
noise generator is shown in Fig. 2(a). The cathode voltage is kept constant
close to −150 V. For dc signals, the anode is shorted to ground via the inductor
L of the resonant circuit, allowing to keep the constant dc voltage between
cathode and anode. For frequency components of the diode current I(t) close
to the resonant frequency of the LC-circuit (or tank-circuit), the impedance
of this circuit is high, and the current I(t) causes a significant voltage drop
across it. This voltage drop can be measured as the output voltage VA.

The output voltage of the noise generator is accessible via a single BNC-
connector.1 Terminals (A) and (B) in Fig. 2 refer to the inner and the outer
conductor (shield) of a single BNC connector.

The diode itself and capacitive loads connected to the output of this cir-
cuit [e.g., coaxial cables, input capacitance of the voltage amplifier connected
between (A) and (B)] contribute to the total capacitance Ctot of the resonant
circuit in addition to C. Its resonance frequency is then given by

fres =
1

2π
√
LCtot

.

1The abbreviation BNC stands for Bayonet Neill-Concelman, as it has a bayonet mount,
and it was invented by Paul Neill and Carl Concelman.
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Figure 2: (a) Schematic circuit diagram of the noise generator. Within the
vacuum diode, C denotes the cathode and A the anode. (b) Equivalent circuit
of the noise generator.

In the same spirit, the resonant circuit will suffer from internal losses (e.g.,
dielectric losses in the capacitors, resistive losses in the coil, resistive losses in
the tube) which determine the quality factor of the circuit and its bandwidth.
As the resonant circuit shortens all frequencies outside its own bandwidth to
ground, the bandwidth of the resonant circuit is the bandwidth ∆f of the
measurement (c.f. eq. (4)). The losses in the circuit can be represented in the
equivalent circuit by a resistance R parallel to L and C [see Fig. 2(b)].

The noise diode is a directly heated vacuum tube (see Fig. 1).2 Fig. 3(a)
schematically shows the current–voltage characteristics of such a vacuum tube,
while Fig. 3(b) shows the current–voltage characteristic for the tube used in
this experiment for a particular heater current. In this experiment the tube
is operated in the saturation region, where the current shows very little de-
pendence on the applied cathode–anode voltage. The tube can therefore es-
sentially be seen as a current source [see equivalent circuit in Fig. 2 (b)]. Its

2The tube used here is a Sylvania Type 5722 noise generating diode. Indirectly heated
tubes contain oxide cathodes. They have the advantage that they can also be heated using
alternating current. On the other hand, the directly heated tube we use, shows a higher
dependence of the emission current on the heating power, which is desired in this experiment.
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Figure 3: (a) Typical current–voltage characteristic of a vacuum diode for
different heating currents. (b) Current–voltage characteristic of the vacuum
diode used in this experiment (taken from the data sheet of the tube).

output current can be controlled via the heating current applied to the cath-
ode. The dc diode current is kept constant at a tunable set point by a control
loop adapting the cathode heating power.

The voltage amplifier. We use the voltage amplifier to measure the diode
current and current noise which is converted into voltage and voltage noise by
the resonant circuit. The amplifier consists of three stages, which are the same
in principle. Two of them amplify the voltage by a factor of 20, the first stage
has an adjustable amplification [10]. The input voltage is ac-coupled to the
first amplifier stage via a 10 nF series capacitor located inside the amplifier
casing. This ac-coupling makes sure that only the fluctuating part of the
voltage couples into the amplifier, and any dc voltages are blocked. The input
impedance of the amplifier is 1 MΩ. The frequency response of the amplifier
is essentially flat in the frequency band between 20 kHz and 4.5 MHz.

Task: Determine experimentally the maximum output voltage of the am-
plifier. If the output voltage approaches this value from below, the amplifier
becomes overdriven and the amplifier output voltage goes into saturation.

The rectifier. A multiplier squares the signal coming from the amplifier.
The basic component is an integrated analog multiplier from Motorola. The
time average is then performed by an RC low-pass filter.
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Task:

1. Determine experimentally, which maximum signal you can apply at the
two inputs of the multiplier (connected in parallel) in order to read full-
scale output on the built-in ammeter.

2. Connect the coaxial output of the multiplier to the oscilloscope. How
does the output frequency compare to the frequency of the input signal?
Can you explain the observed behaviour?

3. Studying the circuit diagram of the multiplier, can you find out what
the time-constant and the bandwidth of the RC low-pass filter at the
output of the multiplier are?

The voltmeter A voltmeter is available for the measurement of dc voltages.
It is advisable to cross-check its output with the oscilloscope.

The high-frequency oscillator. Using a high-frequency oscillator, we de-
termine the resonance frequency of the oscillating circuit. At the same time,
we will use it to generate a reference signal (see section 4.2.3). It can generate
harmonic signals with frequencies from 0.001 Hz to 1.5 MHz. The amplitude
of the output signal can be controlled by either changing the amplitude knob
or changing the selected attenuation.

Task: Determine experimentally the range of voltage amplitudes the oscil-
lator can deliver at the various attenuation levels.

The LRC-bridge. This instrument can measure resistances (R), capaci-
tances (C), and inductances (L). A manual for its operation is provided.

The oscilloscope. It is advisable to use the oscilloscope for checking the
oscillating signals in the circuit. This is a good opportunity to practice the
use of an oscilloscope, which is a standard experimental diagnostic tool in
every research lab.

Cabling and connections. Most connections between the instruments are
made with shielded coaxial cables connecting via BNC connectors. If not,
there are adapters ready to use.
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3 Quantitative description of the measurement prin-
ciple

Description of the noise generator. The equivalent circuit shown in
Fig. 2(b) is mathematically described by

ÜA +
1

τ
U̇A + ω2

0UA =
1

Ctot
İ(t), (5)

where

ω0 =
1√
LCtot

= 2πfres, and τ = RCtot.

Equation (5) describes a driven damped harmonic oscillator with resonance
frequency fres and damping rate 1/τ . The driving signal is the time-derivative
of the diode current fluctuating in time (due to the shot noise). The solution
of eq. (5) may equivalently be described either in the frequency, or in the time
domain. Both descriptions are outlined below.

3.1 Time domain description of the circuit

The LCR-circuit. The response of a resonant circuit to an arbitrary excita-
tion in the time domain can be found by looking at the auxiliary problem of the
circuit response G(t, t′) to an excitation pulse at time t′. The corresponding
equation is

∂2
tG(t, t′) +

1

τ
∂tG(t, t′) + ω2

0G(t, t′) = αδ(t− t′),

with α being the strength of the excitation pulse. We seek solutions of this
equation for the initial condition G(t, t′) = 0 for t < t′, i.e., we consider the
circuit to be quiet before the excitation pulse arrives. The solution is then
given by3

G(t, t′) =
α

ω
e−(t−t′)/2τ sin

[
ω(t− t′)

]
θ(t− t′), (6)

where θ(t) is the Heaviside step function. This equation describes a damped
oscillation with frequency

ω =

√
1

LC
− 1

(2RC)2
=

√
ω2

0 −
(

1

2τ

)2

3This solution is called Green’s function of the problem. Engineers would call it the pulse
response function of the circuit.
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initiated by the pulse at time t = t′. The solution of eq. (5) is then found to
be

UA(t) =
1

ωCtot

∫ t

−∞
dt′e−(t−t′)/2τ sin

[
ω(t− t′)

]
İ(t′).

Partial integration gives the result

UA(t) =

1

Ctot

√
1 +

1

4ω2τ2

∫ t

−∞
dt′e−(t−t′)/2τ cos

[
ω(t− t′) + β

]
I(t′), (7)

where tanβ = 1/ωτ . This equation describes, how the resonant circuit trans-
forms the fluctuating current into a fluctuating voltage signal. Note that for
the circuit in our experiment ωτ � 1, i.e., damping is low.

Action of the voltage amplifier. The voltage amplifier takes the signal
UA(t) of the resonant circuit as its input and amplifies it by a factor A giving
the output voltage

Uamp(t) =

A

Ctot

√
1 +

1

4ω2τ2

∫ t

−∞
dt′e−(t−t′)/2τ cos

[
ω(t− t′) + β

]
I(t′). (8)

Action of the rectifier. The rectifier takes the signal Uamp(t) as the in-
put, multiplies it with itself, and low-pass filters the result. The output signal
is either the voltage Uz(t) that can be measured with the voltmeter (or the
oscilloscope), or the current Iz that can be read from the display on the mul-
tiplier. Both output signals are completely equivalent. In the time domain,
this means that the reading of the ammeter is

Iz = GIΓ

∫ t

−∞
dt′U2

amp(t′)e−Γ(t−t′),

where Γ is the inverse time constant of the low-pass filter, and GI is the gain
factor of the rectifier. A similar relation holds for Uz, but the gain factor GV
will have different units.

Task: What are the units of GI and GV in the two cases where the output
is a dc voltage or a dc current?

By the design of the voltmeter (or the multiplier low-pass filter) the time
constant is very long (in particular, long compared to τ), such that Γ is very
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small. As a result, the above integral is essentially a time average of U2
amp(t),

meaning
Iz = GI〈U2

amp(t)〉. (9)

In order to find this average, we make use of Campbell’s theorem [11] (see
Appendix A). To this end we assume that every electron i transferred from
the cathode to the anode at t = ti generates a current pulse I(t− ti) such that
the total current is given by

I(t) = −|e|
∑
i

δ(t− ti), (10)

where e is the elementary charge. We assume the electron transfers to be inde-
pendent of each other in the saturation region of the tube. As a consequence,
the times ti are completely random and uncorrelated. The time averaged cur-
rent 〈I〉 is, however, proportional to the average number of electrons being
transferred per unit time, i.e.,

〈I〉 = −|e|n, (11)

where n is the transfer rate of electrons.
Each individual current pulse generates a response at the output of the

oscillating circuit, which has the form of a damped harmonic oscillation. We
see this by inserting eq. (10) into eq. (8), giving

Uamp(t) =
−|e|A
Ctot

√
1 +

1

4ω2τ2︸ ︷︷ ︸
:=U0

∑
i

e−(t−ti)/2τ cos [ω(t− ti) + β] θ(t− ti).

The voltage Uamp(t) at the output of the amplifier is equal to the superposition
of voltage pulses starting at different times ti < t. An individual voltage pulse
starting at time zero has the form of the damped harmonic oscillation

U(t) = U0e
−t/2τ cos [ωt+ β] for t ≥ 0. (12)

In such a situation, Campbell’s theorem [11] (Appendix A) gives the average
〈U2

amp(t)〉 as

〈U2
amp(t)〉 = n ·

∫ ∞
0

U2(t)dt. (13)

Inserting eqs. (12) into (13) and making use of ωτ � 1 results after some
algebra in

〈U2
amp(t)〉 =

A2e2nτ

2C2
tot

= A2 |e| |〈I〉|R
2Ctot

.
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Inserting this equation into eq. (9) gives the final result

Iz = GIA
2 ×R2 × 2|e| |〈I〉| × 1

4τ
=
GIA

2R|e| |〈I〉|
2Ctot

. (14)

3.2 Frequency domain description of the circuit

The same result can be obtained, by seeking the solution of eq. (5) in the
frequency domain. Doing this leads to further interesting insights into the
problem. Fourier transforming eq. (5) leads to

ÛA(ω) =
iω/Ctot

ω2
0 − ω2 + iω/τ

Î(ω). (15)

This equation describes the resonant response of the circuit to a driving cur-
rent. It is the analogue of eq. (7). Note that ω is not the resonance frequency
of the circuit here, but can take any values. For example, for ω = ω0 we find
ÛA(ω0) = RÎ(ω0), i.e., the response is purely resistive.

Action of the voltage amplifier. Assuming that the voltage amplifier has
a flat frequency response in the frequency range around the resonance of the
resonant circuit, the output signal after amplification by a factor A is

Ûamp(ω) =
iAω/Ctot

ω2
0 − ω2 + iω/τ

Î(ω). (16)

This is the frequency-domain analogue to eq. (8).

Action of the rectifier. Multiplication of the signal in the time domain
is equivalent to a convolution integral in the frequency domain leading to the
voltage Uz(ω) at the output of the multiplier given by

Uz(ω) =
GV
2π

∫ +∞

−∞
dω′Ûamp(ω′)Ûamp(ω − ω′)

= −GVA
2

2πC2
tot

∫ +∞

−∞
dω′

ω′Î(ω′)

ω2
0 − ω′

2 + iω′/τ

(ω − ω′)Î(ω − ω′)
ω2

0 − (ω − ω′)2 + i(ω − ω′)/τ
, (17)

where GV is the multiplier voltage gain factor. The low-pass filter at the
output of the multiplier averages the squared voltage and converts it into a
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current. It therefore essentially selects the zero frequency component Uz(0)
giving

Iz =
GIA

2

2πC2
tot

∫ +∞

−∞
dω

ω2Î(ω)Î(−ω)

(ω2
0 − ω2)2 + ω2/τ2

. (18)

Since I(t) is a real valued signal, Î(−ω) = Î?(ω). The product

S̃I(ω) = Î(ω)Î?(ω) = |Î(ω)|2

is the (bilateral) power spectral density of the current shot noise (Wiener–
Chinchin theorem). At the same time, the integrand is even in ω. This leads
to

Iz =
GIA

2

2πC2
tot

∫ +∞

0
dω

ω22S̃I(ω)

(ω2
0 − ω2)2 + ω2/τ2

. (19)

Note that we now integrate over positive frequencies only. The single sided
spectral density

SI(ω) = 2S̃I(ω)

is called the unilateral power spectral density of the current noise. We can
now write

Iz =
GIA

2

2πC2
tot

∫ +∞

0
dω

ω2SI(ω)

(ω2
0 − ω2)2 + ω2/τ2

. (20)

We see that the resonant circuit acts as to select from the power spectral
density SI(ω) a narrow frequency band around the resonance frequency ω0 as
shown in Figure 4. The output signal Uz(0) is proportional to the noise power

frequency frequency

SI(ω) SV(ω)

Figure 4: Left: White noise power spectral density of the shot-noise current.
Right: Voltage noise power at the output (A) of the resonant circuit. The
shaded area below this curve corresponds to the measured mean squared volt-
age noise.
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spectral density SI(ω) integrated over this frequency band (see shaded area in
Fig. 4, right plot). Because the power spectral density for shot noise SI(ω) is
independent of frequency in the range of interest around the resonance of the
resonant circuit, we talk about white noise. In our case SI(ω) = S0 = 2|e||〈I〉|
[c.f., eq. (4)]. Inserting this result into eq. (18) leads to

Iz =
GIA

2R2

2πτ
S0

∫ +∞

0
d(ωτ)

(ωτ)2

((ω0τ)2 − (ωτ)2)2 + (ωτ)2
. (21)

The frequency integral evaluates to π/2 giving the result

Iz = GIA
2R2S0

1

4τ
= GIA

2 ×R2 × 2|e| |〈I〉| ×∆f, (22)

in complete correspondence to the time-domain result (14). The quantity
∆f = 1/4τ = 1/4RCtot may be interpreted as the effective bandwidth of
the resonant circuit. The product 〈∆I2〉 = 2|e||〈I〉|∆f is therefore the mean
current fluctuation within the resonant circuit bandwidth. The factor R2

converts this current fluctuation into a mean voltage fluctuation 〈U2
A〉 = R2×

2|e||〈I〉|∆f at the amplifier input. The amplification factor GIA
2 amplifies

this signal to give the output current Iz.
Equation (22) allows the determination of the elementary charge |e| from

measurable quantities 〈I〉, Iz, GIA2, R, and Ctot.

4 Experimental procedure

4.1 Goal of the measurements

The elementary charge is to be determined by measuring the shot noise for at
least ten different diode currents I between 5 and 25 mA. Using formula (22),
the elementary charge can be determined by measuring the other unknown
quantities (see section 4.2). Each quantity that is directly measurable should
be measured repeatedly (at least a few times) in order to estimate the true
value and its uncertainty. Work out carefully how these uncertainties lead to
the final uncertainty of the result for the elementary charge.

In order to avoid unnecessary systematic errors, short cables should be
used in all measurements. Between the amplifier and the rectifier, equally
long cables have to be used. BNC connectors should not be left open, since
this could influence the measurement.
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4.2 Measurement of the individual quantities

General advice. After turning on the various units of the equipment they
should be given time to equilibrate thermally before commencing with any
measurement. The current of the noise generator is a good indicator for this
process.

It is generally advisable to keep the signal amplitudes well within the range
of the measuring units. The HF oscillator output and the amplifier gain should
be adjusted such that the measurements will neither be made in the lowest
range of the voltmeter, nor in the saturation regime of the rectifier display. The
oscilloscope is an ideal tool for checking the quality of the signals. Coarse and
qualitative test measurements can tell you, whether the chosen setup and the
corresponding parameters yield consistent individual results and will therefore
lead to an acceptable value of the elementary charge. Only after such tests
have been made, precise and systematic measurements should be started.

Task: While reading through the following measurement procedures, develop
a good measurement strategy. Which of the required measurements of ρ,
Ctot, R, and 〈V 2

amp〉 are independent, which measurements can or should be
combined for most precise results? In which sequence will you perform these
measurements? Discuss your strategy with the supervisor.

4.2.1 Measurement of Ctot

The capacitance Ctot corresponds to the oscillating circuit’s capacitance (ca-
pacitor and diode capacitance), the capacitance of the amplifier input and the
capacitances of the connection cables (coaxial cables) from the noise generator
to the amplifier. Therefore, the amplifier has to be connected when Ctot is
measured.

Excite the oscillating circuit with the oscillator connected in C and the
amplifier connected in A. The resonance frequency ω1 of the resonant circuit
can now be determined.

Task:

1. Why can we not excite the resonator by connecting the oscillator directly
in A?

2. Does it make a difference whether we use the 50 Ω or the 600 Ω output
of the oscillator?
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In the next step a known capacitance C1 is connected parallel to the os-
cillating circuit, i.e., between A and ground (B) (see Fig. 5). The resonance
frequency ω2 can be determined.

L Ctot
I(t)

Vout

R
(A)

(B)

vacuum tube

Ci

Figure 5: Measurement of the effective capacitance Ctot

Since the two resonance frequencies are given by ω1 = 1/
√
LCtot and

ω2 = 1/
√
L(Ctot + C1), the effective capacitance Ctot (and the inductance L)

can be calculated from the knowledge of ω1, ω2 and C1.
The capacitance Ctot does not vary for different diode currents I. It is

therefore sufficient to measure Ctot for one current only (but it still has to be
measured repeatedly).

Task: Check this statement experimentally on a qualitative level.

4.2.2 Measurement of R

Measurement of ρ. Before determining R, it is necessary to measure the
resistance ρ (see Fig. 6). To this end, the RCL-bridge hast to be connected to
terminal (C). Terminal (C) is the inner conductor of a BNC connector. The
outer conductor of this connector is ground (B). For operating the LCR-bridge,
follow the instructions in the provided manual.

Measurement of R. The damping resistance R of the oscillating circuit
changes with the diode current. The measurement of R works as follows:
connect the oscillator to terminal (C), and the amplifier to terminal (A). The
excitation frequency has to be set to the resonance frequency. Calibrate the
first amplifier stage and extract the gain A1.

The oscillating circuit is now excited with an amplitude U1 that you choose
to be not too low and not too high. Measure this amplitude with the voltmeter
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ρ
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vacuum tube

Figure 6: Determination of R.

before or after connecting the oscillator to terminal (C). With the oscillator
connected to (C), measure the output of the first amplifier stage with the
voltmeter and determine the voltage U2 at the amplifier input by dividing the
value by A1.

Since the current I through both resistances is the same, it follows that

R =
U2

U1 − U2
· ρ (23)

Task:

1. Why is it important to set the excitation amplitude not too low? What
determines the upper limit of the excitation amplitude?

2. Why is it important to do this measurement precisely at the resonance
frequency?

3. Why do we need to use the amplifier for this measurement? Would it
not be much easier to measure U1 with the voltmeter directly at (C) and
U2 at (A)?

4.2.3 Measurement of 〈U2
A(t)〉

The indicator of the rectifier shows a quantity which is proportional to the
shot noise, but there is an unknown calibration factor GIA

2 (see eq. (22)).
As a consequence, 〈U2

A(t)〉 cannot be read directly from the display. In order
to calibrate GIA

2 properly, you have to use a reference signal of well-known
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amplitude (generated by the high frequency oscillator) and make a note of the
corresponding reading of the indicator of the rectifier. To do it correctly, first
find a range of amplified voltage for which the indicator on the rectifier does
not saturate. For this, consider making a quick test using the highest diode
current I and setting the amplification factor such that the amplitude Iz on
the ammeter of the rectifier is reasonably high. Once the amplification factor
A is set, it should not be changed anymore for the remaining experiments to
achieve most precise results.

Calibration of the amplifier and multiplier. The reference signal you
can use for calibration is the sinusoidal signal provided by the HF oscillator.
Feed this signal at the resonance frequency into the amplifier and vary the am-
plitude U0 of the signal (U0 may either be measured with the oscilloscope or the
ac-voltmeter). The range of possible amplitudes will be very low. Therefore
attenuate the oscillator output signal. If needed, an additional 20 dB atten-
uator is found at the experiment. Calibrate the amplifier-multiplier assembly
by taking a reasonable number of data points (U0, Iz). Estimate the quantity
GIA

2 for your data points and make sure you obtain reasonably similar values
for all points. When you do a proper data analysis later, curve fitting may
help you to obtain a more precise calibration.

5 Derivation of the Schottky formula [1]

In a vacuum tube thermally excited electrons are emitted from the hot cath-
ode, and sucked away by a large electric field. The tunneling barrier is char-
acterized by a transmission T (E) depending on the energy of the impinging
electron [see Fig. 7]. Well below the top of the barrier the transmission is
exponentially suppressed, whereas far above the barrier it is essentially one.
Close to the top of the barrier the transmission exhibits a sharp step from
values T (E)� 1 to T (E) ≈ 1. The work function W of the cathode material
is of the order of 5 eV, the cathode temperature is of the order of 2000◦C
corresponding to a thermal energy kBT ≈ 190 meV. The occupation fK(E)
of states in the cathode is given by the Fermi–Dirac distribution function.
Since kBT � W the occupation probability close to the barrier top, where
the transmission becomes appreciable, is very small and well described by the
Boltzmann distribution. The states on the vacuum side of the barrier can be
considered to be unoccupied because any tunneling electron is immediately
sucked away. Thermionic emission of electrons from the cathode is deter-
mined by the interplay between the sharp step of the transmission function
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Figure 7: Schematic diagram of thermally activated tunneling from the heated
cathode of the diode into the vacuum.

at the barrier top, and the exponential tail of the Boltzmann distribution. As
a result, the product fK(E)T (E) shows a marked maximum near the top of
the barrier, but even there the value fK(W )T (W ) � 1 (we choose the cath-
ode Fermi energy as the energy zero). This is the characteristic situation for
thermionic emission of electrons. The number of cathode states at this energy
is proportional to the density of states D(W ).

Electron transmission as a probabilistic experiment. We now describe
the electron emission process from the cathode as a probabilistic experiment.
Assume that within an observation time t0, N ∝ D(W ) attempts were pos-
sible for electrons to hit the barrier. The statistics of whether such a poten-
tial attempt leads to a tunneling electron or not depends on the probability
p = fK(W )T (W ). The situation for an individual potential attempt is the
same as in a probabilistic experiment with two possible outcomes, such as
tossing a coin. Here, the two out- comes are, (1) an attempt is successful
(probability p) and an electron is transmitted, or (2) an attempt is unsuccess-
ful (probability 1−p) and no electron is transmitted. The probability that out
of the N attempts, n electrons are transmitted, is then given by the binomial
distribution

P (n) =

(
N
n

)
pn(1− p)N−n =

N !

n!(N − n)!
pn(1− p)N−n. (24)
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In the case of thermionic emission from a metal, where p � 1, the binomial
distribution can be well approximated by the Poisson distribution

P (n) =
µn

n!
e−µ, (25)

with the mean value µ ≡ 〈n〉 = Np and the variance σ2 = µ = Np.

Average current and classical shot noise. With the Poisson distribution
function, the mean electrical current is calculated to be

I = −|e|〈n〉
t0

= −|e|N
t0

p. (26)

It could be measured in a way in which the transmitted electrons are repeat-
edly counted over a time span t0 on the anode side. The average of the number
of counts is then determined from the measured counting statistics which we
have assumed to be poissonian. The time span t0 plays the role of an integra-
tion time, or equivalently, ∆ν = 1/2t0 is the bandwidth of the measurement
apparatus.

The shot noise is revealed if we consider the temporal fluctuations in the
number of transmitted electrons which is related to the width of the Poisson
distribution function. The average of these fluctuations is given by

(δn)2 = 〈(n− 〈n〉)2〉 = µ = np. (27)

Correspondingly, the mean fluctuations of the electrical current are〈
∆I2

〉
t0

= 〈I2〉 − 〈I〉2 =
e2(∆n)2

t20
=
e2

t20
Np =

|e|
t0
|〈I〉| = 2|e||〈I〉|∆ν. (28)

The spectral density of the shot noise is

S0 = 2|e||〈I〉|. (29)

6 Tasks

1. Determine the elementary charge |e| from the shot noise for at least five
different diode currents.

2. Determine the uncertainties of the measured quantities including the
elementary charge with a clear error analysis to check the quality of the
measurement. Compare your estimate for |e| and its uncertainty with
the literature value and judge the accuracy of your measurement.
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3. (a) Derive equation (5).

(b) How is the quality factor Q of the resonant circuit related to R,
L, and Ctot? How big is the quality factor of the resonant circuit
used in this experiment? Use secondary literature, if you need a
definition of the quality factor.

(c) Derive equation (14) using eq. (12) and Campbell’s theorem in eq.
(13).

(d) In the quantitative description of the measurement circuit in the
frequency domain, the action of the low-pass filter at the output
of the rectifier is taken into account approximately by using the
zero-frequency limit. What is the frequency domain description of
a low-pass filter? Can you justify the zero-frequency limit more
rigorously, using the proper low-pass filter characteristics?

(e) Derive eq. (23).

4. Answer the following questions:

(a) Apart from shot noise, how else can the elementary charge be de-
termined (directly or indirectly)? What are the advantages and
disadvantages of the different methods, and what is their precision?

(b) Why does one have to set the correct current on the diode to mea-
sure R?

(c) Why does the experiment use an oscillating circuit as the anode
impedance?

A Campbell’s theorem [11]

Let F (t) be a function of time which is generated by superimposing identical
functions f(t− ti) occurring at an average rate n0, but at completely random
and statistically independent times ti:

F (t) =
∑
i

f(t− ti). (30)

The average response at a later time t′′ due to impulses in an interval dt′

around time t′ is then given by f(t′′− t′)n0dt
′. The constant average response

of the system at time t′′ due to impulses arriving during all previous time
intervals is then given by

〈F (t)〉 =

∫ t′′

−∞
n0dt

′f(t′′ − t′)
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Changing variables to t = t′′ − t′ gives the first part of Campbell’s theorem

〈F (t)〉 = n0 ·
∫ ∞

0
f(t)dt. Campbell’s theorem (a) (31)

For the mean square of F (t), we have correspondingly

〈F 2(t)〉 =

∫ t′′

−∞
n0dt

′f2(t′′ − t′)

giving, with the same substitution used above, the second part of Campbell’s
theorem

〈F 2(t)〉 = n0

∫ ∞
0

dtf2(t). Campbell’s theorem (b)
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B Circuit diagram of the noise module
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Anode current stabilization

Due to the high ampflification of the operational amplifier 741, u− ≈ u+.
Therefore, a current i = 15V/150kΩ = 0.01 mA flows through R1 = 150 kΩ.
The current i+ � 0.1mA, meaning that i has to flow through R2 as well. Thus,
a voltage u12 = iR2 arises between 1 and 2 and the anode current is stabilized
to I = u12/RI = iR2/RI . If I would be too low, then u12 < iR2 and therefore
u+ > u−, but then uout grows and would turn-on the Darlington combination
stronger which would increase the tube heating power and therefore the anode
current would rise too.
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Figure 8: Scheme of the anode current stabilization circuit.
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C Circuit diagram of the rectifier module
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D Circuit diagram of the voltage amplifier
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