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1 Safety
 The vacuum chamber may be only be opened by the assistant (radioactive 241Am

source!).
 Observe general rules of conduct when handling radioactive substances!
 Follow all other safety instructions at the setup or given by the assistants!
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2 Introduction
In 1913, Geiger and Marsden [1] published the results of their research on the scattering
of α particles by thin metal foils. These experiments brilliantly confirmed the hypothesis
of the existence of a heavy positively charged nucleus within the atom put forward by
Rutherford [2].
In these experiments, α particles (He2+ ions) of natural radioactive emitters were used
as probes. These ions with energies in the MeV range can only be slightly deflected by
interaction processes with the light electrons of the scattering atom. Large scattering
angles, as observed experimentally, are only possible by scattering at the atomic nucleus.
Artificially accelerated ions were used to trigger nuclear processes from about 1932 on-
wards, after appropriate particle accelerators became available. The focus of this work
was to explain the structure and level schemes of atomic nuclei and the nuclear trans-
formations triggered by ion bombardment. Ion scattering was already used at that time
to identify impurities in the bombarded target materials. However, the widespread use
of ion scattering became possible only after semiconductor detectors became available
for the detection of particle and quantum radiation. In conjunction with these detec-
tors and through the use of small computers, low-energy accelerators became widely used
analytical instruments. The use of ion scattering for analytical applications was greatly
influenced by the introduction of ion implantation for the doping of semiconductors. This
novel doping technology necessitated the measurement of defect and dopant depth pro-
files, which could be achieved using ion scattering [3]. Today, ion scattering, in particular
the scattering of He ions with energies E < 2 MeV, is widely used to analyze near-surface
regions of solids.
The main task of this experiment is to verify the angular dependence in Rutherford’s
scattering formula by determining the exponent of sin(ϑ/2). Another goal is to acquire
knowledge in the following areas:

• Kinematics of α decay: determination of the energy of α particles.
• Detector and measurement electronics (signal processing): detector (signal generation,

energy resolution), discriminator (pulse shaper), counter.
• Interaction of charged particles with matter:

– Elastic scattering as a single process: impact parameters, deflection angle, observa-
tion in both the laboratory and the center of mass system.

– Elastic scattering as a collective process: cross section, differential cross section
(transformation between the laboratory and center of mass system).

– Specific energy loss: Bethe-Bloch formula, range, range dispersion, energy disper-
sion.

• Measurement acquisition and processing: optimal choice of measurement points and
measurement times, statistical analysis, linear regression taking into account measure-
ment errors, goodness-of-fit test (χ2 test).
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3 Theoretical Exercises

3.1 Kinetic energy of the α particles
• Calculate the kinetic energy Tαi of α particles emitted from a 241Am source using the

values for the excitation energies EAi given in table 1.
• From this, determine their mean energy Tm using the given transition probabilities.
• Calculate the mean kinetic energy Tm,c of the α particles in the center of mass system

(α particles - gold atom).
• From here on, the value Eα = 3.65 MeV should be used for the energy of the α particles

(see section 5.2.1). Why do the values from the tasks above differ from this one?

3.2 The closest possible approach D

• Calculate the closest possible approach D of the α particles to a gold nucleus using
equation 26.

• Using equation 17, determine the differential cross section for this central impact.

3.3 Validity of the Rutherford formula
• Calculate the scattering angle ϑ (see figure 14) and the impact parameter b (see equa-

tion 2) for two different distances xmin = 50 mm and xmax = 150 mm between the
scattering foil and the detector (assume that the particles are scattered at the height
RA).

• Examine whether deviations (for both high and low energies) from Rutherford’s formula
are to be expected when α particles are used in the energy range that is being considered
(see chapter 7.1).

3.4 Specific energy loss
3.4.1 In the gold foil
• Using the Bethe-Bloch formula (see chapter 7.4), calculate the stopping power of α

particles in gold in units of eV/(1015atoms/cm2) and keV/µm. Use the constants given
in table 4 for K and ⟨EB⟩.

• Which energy of the α particles is available for signal formation in the semiconductor
if the middle hole of the scattering geometry is used?

• For xmin = 50 mm, calculate the minimum and maximum energies Emin and Emax of the
α particles in the scattering experiment which are available for signal formation in the
detector, taking into account the finite dimensions of the scattering foil and detector
(figure 14 may be useful).

3.4.2 In air
• Using the Bethe-Bloch formula (see chapter 7.4), calculate the stopping power of α

particles in air in units of eV/(1015atoms/cm2) and keV/mm. Does a chamber pressure
of 5 to 10 mbar have an effect on the measurement or not?
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3.5 Differential cross section σ(ϑ)
• Calculate the correction factor that results for σ(ϑ) when we transform from the center

of mass system to the laboratory system (i.e. the mass of the gold nucleus is not
assumed to be infinite), see equations 13 and 15, and plot its behavior for all possible
ϑ. Based on the results, what can be said about the further consideration of the
correction factor?

• Calculate the differential cross section for Rutherford scattering for xmin = 50 mm.
What are the corrections compared to the assumption that all particles are scattered
at the height of the central radius of the foil ring, when taking into account the finite
dimensions of the scattering foil and detector (figure 14 might be useful)? Consider
how a plot of these corrections to the nominal angle looks like and what this means for
the experiment.
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4 Fundamentals

4.1 Elastic scattering
We consider the elastic scattering of α particles at the unshielded Coulomb potential of
Au nuclei (see figure 1). The α particle flies toward the target nucleus with velocity v0
and impact parameter b and is deflected through the angle ϑ. The Au nucleus shall be at
rest before the collision.

α particle m1 mass
Z1e charge (Z1 = 2)
v0 velocity
E0 kinetic energy

Au nucleus m2 mass
Z2e charge (Z2 = 79)

The potential in this situation is

V (r) = Z1Z2e
2

4πε0

1
r

= Z1Z2ξ
2

r
, (1)

where ξ2 is a constant defined by ξ2 = e2

4πε0
= 1.44 eV nm. In the repulsive Coulomb

potential, the α particle describes a hyperbolic orbit [4]. For the scattering angle ϑ the
following relation follows:

tan
(

ϑ

2

)
= Z1Z2ξ

2

m1v2
0b

= Z1Z2ξ
2

2E0b
. (2)

Thus, for a given energy E0, the impact parameter b uniquely determines the associated
scattering angle ϑ.

Au atom: Z2e, m2

br

ϑα particle: Z1e, m1, v0

Figure 1: Elastic scattering.

The α particle transfers kinetic energy to the Au nucleus during the interaction. The
kinetic energy E1 of the α particle after the interaction can be calculated from the con-
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servation laws of energy and momentum [3]. For the ratio E1/E0 we get:

E1

E0
= K2 =

K1 cos ϑ +
√

1 − K2
1 sin2 ϑ

1 + K1

2

, (3)

where we defined K1 = m1
m2

and call K2 kinematic factor.

4.2 Cross section

target

scattering angle ϑ

solid angle dΩ

incident particles

irradiated area A

detector
scattered particles

Figure 2: Scattering experiment.

To calculate the number of scattered particles as a function of the scattering angle, we need
the concept of the cross section. A common scattering experiment is shown schematically
in figure 2 [4]. A parallel beam of particles falls on a target and illuminates the area
A. Under the angle ϑ against the direction of the incident beam there is a detector. It
detects the particles leaving the target into the differential solid angle dΩ. We want to
find the number of scattered particles registered by the detector per unit of time. Since
no further direction shall be physically distinguished (e.g. by a spin or a magnetic field),
the scattering intensity will not depend on the azimuth angle φ, but only on ϑ. The
probability W (classical definition) that an elastic scattering occurs when irradiating the
target surface A is given by

W = dNa/dt

dNe/dt
= Na/t

Ne/t
= NAK · σ

A
= number of scattering events per unit of time

number of incident particles per unit of time . (4)

Since the half-life of 241Am is large compared to the duration of our experiment, we
have stationary conditions in time. Therefore, we could replace the terms dN/dt by
N/t. Furthermore, we assigned a defined area σ to each scattering center (cross section).
Whenever the center of mass of the incoming particle hits this area, scattering shall take
place. The number of atomic nuclei (scattering centers) in the irradiated target volume
V = A · d was denoted here by NAK. We assumed here that the target thickness d is so
small that the effective areas σ do not overlap. From equation 4, we thus obtain for σ:

σ = Na/t

NAKNe/(At) = number of reactions per scattering center and unit of time
current density of the incident particles . (5)
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For the probability dW (ϑ), i.e. for the scattering into the differential solid angle dΩ under
the angle ϑ, we thus obtain:

dW (ϑ) = dNa/t

Ne/t
= NAKdσ(ϑ)

A
= NAK

A

dσ(ϑ)
dΩ dΩ . (6)

The quantity dσ/dΩ = σ(ϑ) is called differential cross section. From equation 6 we get
the following expression for it:

dσ(ϑ)
dΩ = σ(ϑ) = dNa/dΩ

NAKNe/A
= dNa/(dΩt)

NAKj
, (7)

which means:
dσ(ϑ)

dΩ = number of particles scattered in dΩ per unit of time
number of target nuclei ∗ current density of incident particles . (8)

The quantity j = Ne/(At) is the current density of the incident particles. Equations
5 and 7 can be regarded as definitions of the cross sections. They are also useful for
quantum mechanical problems. By integrating σ(ϑ) over the total solid angle, we obtain
the total cross section σtot. In nuclear physics, cross sections for nuclear reactions are
defined analogously. The cross section has the dimension of an area. The common unit
is barn,

1 barn = 10−24 cm2 , (9)
since the values of many cross sections lie within this order of magnitude. The unit for
the differential cross section is accordingly e.g. barn/sr or mbarn/sr.

4.3 Cross section for elastic scattering
To calculate the cross section for elastic scattering, we first consider equation 2. The
scattering angle ϑ is a unique function of the impact parameter b and the particle energy
E, i.e.: ϑ = ϑ(b, E). All particles which asymptotically emerge from an annulus between
b and b+db around the symmetry axis are scattered into the solid angle dΩ = 2π sin(ϑ)dϑ
and must find themselves there, i.e.:

j · 2πbdb = j · dΩ dσ

dΩ = j · 2π sin(ϑ)dϑ
dσ(ϑ)

dΩ , (10)

or
dσ(ϑ)

dΩ = b

sin ϑ

∣∣∣∣∣ db

dϑ

∣∣∣∣∣ . (11)

In equation 11 we have an absolute value because by definition the cross section cannot
become negative. We can solve equation 2 for b and get:

b = Z1Z2ξ
2

2E

1
tan

(
ϑ
2

) , (12)

and with equation 11 after some rearranging:

σ(ϑ) = dσ(ϑ)
dΩ =

(
Z1Z2ξ

2

4E

)2 1
sin4

(
ϑ
2

) . (13)
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This is Rutherford’s famous scattering formula.
If the scattering center does not have infinite mass, equation 13 is valid in center of mass
coordinates. The energy and the scattering angle are then the quantities in the center of
mass system (highlighted by the index c):

E1c = m1

2 v2
1c =

(
m2

m1 + m2

)1
2mrv

2
r = E0

(1 + K1)2 , (14)

with vr the relative velocity between the two particles, which in our case coincides with
the particle velocity v0 in the laboratory system, since the gold nucleus is at rest before the
collision, mr = m1m2

m1+m2
the reduced mass, and tan ϑ = sin ϑc

K1+cos ϑc
the relation between the

scattering angles. The transformation of equation 13 into the laboratory system results
in [3]

σ(ϑ) = dσ(ϑ)
dΩ =

(
Z1Z2ξ

2

4E

)2 4
sin4 ϑ

(
cos ϑ +

√
1 −

(
m1
m2

sin ϑ
)2
)2

√
1 −

(
m1
m2

sin ϑ
)2

. (15)

For m1 ≪ m2, σ(ϑ) can be expanded into a power series:

σ(ϑ) =
(

Z1Z2ξ
2

4E

)2(
sin−4

(
ϑ

2

)
− 2

(
m1

m2

)2
+ . . .

)
, (16)

where the first omitted term is of order
(

m1
m2

)4
. If we express the energy in terms of MeV,

σ(ϑ) has the following expression:

σ(ϑ) = 1.296
(

Z1Z2

E/MeV

)2(
sin−4

(
ϑ

2

)
− 2

(
m1

m2

)2
+ . . .

)
mbarn/sr . (17)

The total cross section for elastic scattering equals ∞, since we have assumed an infinite
range for the Coulomb force.

4.4 Relationship with the measured variables
From equation 6 we obtain for the particles emitted in dΩ:

dNa = NAKt

A

Ne

t

dσ

dΩdΩ . (18)

However, since our detector has a finite size, we still have to integrate over its solid angle
ΩD:

Na = NAKt

A

Ne

t

∫
ΩD

dσ

dΩdΩ = nAKtd
Ne

t
ΩD

dσ

dΩ = nAKtdIS
ΩF

4π
ΩD

(
Z1Z2ξ

2

4E

)2 1
sin4

(
ϑ
2

) (19)

Here ΩF is the solid angle under which the source sees the scattering foil, see equation
41. And thus

Na

ΩDt
= C

sin4
(

ϑ
2

) , (20)
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or respectively

ln
(

Na

ΩDt

)
= ln C − 4 ln

(
sin
(

ϑ

2

))
. (21)

The constant
C = nAKdIS

ΩF

4π

(
Z1Z2ξ

2

4E

)2

(22)

can be determined experimentally. IS is the activity of the Am source, d the thickness
of the foil, and nAK the bulk density of the gold atoms. Equation 21 has the form of a
straight line equation y = ax + b, where

y = ln
(

Na

ΩDt

)
, x = ln

(
sin
(

ϑ

2

))
, a = −4 . (23)

If the measurements lie on this straight line, it would be the confirmation of the assump-
tion that there are atomic nuclei in the center of the atoms, where the scattering takes
place. The constant C can be determined from the intersection of the straight line with
the ordinate. From the value of C the activity IS of the Am source can be estimated,
since the other quantities are known.
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5 Measurement Apparatus

5.1 Structure of the apparatus
The apparatus we use is shown schematically in figure 3. In an evacuable glass cylinder
(scattering chamber) the following are arranged on the same axis: α source, annular
scattering foil and α detector. The chamber can be purged with a diaphragm pump
down to a pressure of about 5 mbar, to avoid unwanted energy losses and scattering of α
particles by gas molecules. The source and scattering foil are mounted at a fixed distance
δ on a rotatable and movable metal rod. By rotating it, the source and/or a central hole
in the foil plane can be uncovered. This makes it possible to measure the background
while the source is covered. With the source and central hole of about 1 mm diameter
open (covered with the same gold foil as the scattering foil), α particles can be shot
directly at the detector. For the scattering measurements, the center hole can be closed.
Further processing of the detector pulses is done with the electronic components outside
the scattering chamber.

scattering foil

detectorsource
R1 R2

RA

δ (fixed) x (adjustable)

ΩD

ΩF

Figure 3: Scattering geometry. The fixed quantities are given as follows: δ = 73 mm,
R1 = 23 mm, R2 = 27 mm, RA = 25 mm. Note: δ is measured from the source to the scattering
foil, which is placed on the rear side of the indicated metal carrier disk (gray rectangles at the
top and bottom). Furthermore, the small coverable hole in the center of the carrier disk is
indicated.

5.2 Specifications of the components
5.2.1 Source

A 241Am specimen is used as the α source. A thin layer of americium (mixed with silver)
was deposited on a metal foil, onto which about 3 µm gold was then vapor-deposited.
The half-life of 241Am is 432 y and consequently we consider the source to have a constant
activity IS. During decay, α particles of different energies are emitted, which can be
counted with the available detection equipment, but cannot be separated energetically.
The α particles from the source we use, unlike a thin source such as those used in the VP on
alpha absorption (see figure 9), show a broad energy distribution, with an average energy
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of about 3.65 MeV and a full width at half maximum (FWHM) of about 840 keV, see figure
4. The reduced average energy increases the count rate of the scattering measurements
(explanation!). The source is fixed on a metal plate and thus can emit into a solid angle
of 4π. The diameter of the source is about 10 mm, but the activity is not uniformly
distributed over the active area. We therefore assume the source to be point-like. The
consequence for the calculation of the scattering angles can be easily estimated. The
radioactive material used has the inconvenient property that larger conglomerates can
enter the chamber through corrosion and recoil effects. This can lead to contamination
of the scattering chamber and increase the background. It is therefore necessary to close
the lid in front of the source after measurements and during longer measurement pauses.
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0 1000 2000 3000 4000 5000 6000
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Figure 4: Energy distribution of the α particles of the 241Am source we use. The average
energy is 3.65 MeV, the full width at half maximum is 840 keV.

5.2.2 Scattering foil

In the experiment, a ring-shaped scattering foil made of gold is used. The ring geometry
offers the advantage that with a good definition of the scattering angle a relatively large
effective target area is involved in the scattering experiment (relatively large solid angle
ΩF ). The use of gold as scattering foil is advantageous because the yield Na of scattered
particles increases with Z2

2 . The gold foil was produced by vapor deposition in vacuum.
From the surface thickness ρF indicated on the glass cylinder used in the experiment
setup, the geometric thickness d = ρF /ρ equals about 1 µm (ρ is the material density).
Therefore, great care must be taken when evacuating or venting the scattering chamber.

5.2.3 Detector

A surface barrier detector is used to detect α particles. It consists of a silicon single
crystal (n-type) on whose surface a thin gold layer has been vapor-deposited. The key
parameters can be found in the data sheet in figure 5.
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Figure 5: Data sheet of the surface barrier detector.

Figure 6: Schematic diagram of a surface barrier detector. The upper portion of the figure
shows a cutaway sketch of the silicon disc with gold film mounted in the detector housing. The
lower portion shows an α particle forming holes and electrons over its penetration path. The
energy band diagram of a reverse-biased detector (positive polarity on n-type silicon) shows
the electrons and holes being swept apart by the high electric field within the depletion region.
(From [3].)

The resistivity of the silicon used is 4400 Ω cm. At the applied bias voltage of about 12 V,
the sensitive layer has a thickness of about 120 µm [5], which is sufficient to decelerate
α particles with energy greater than 10 MeV. In addition to the existing gold layer of
40 µg/cm2, the detector was vapor-coated with a gold layer of about 200 µg/cm2 to make
it insensitive to light. This causes the α particles, similar to what happens in the scatter-
ing foil, to lose more or less energy depending on the scattering angle, which can lead to
counting losses, especially at high discriminator settings. Furthermore, the energy resolu-
tion of the detector is worsened such that the individual α particle groups can no longer
be separated, but this is not necessary in this experiment. When calculating the x value,
note that the sensitive area of the detector (AD = 50 mm2) is 3 mm behind the leading

12



edge of the detector. So 3 mm must be added to the measured distance (scattering foil -
detector leading edge).

5.2.4 Electronics

counting devicerecipient

source
foil

detector amplifier
discriminator

counter

D A Disc C

Figure 7: Block diagram of the electronic measuring equipment.

The block diagram of the electronic measuring equipment is shown in figure 7. The α
particles hitting the detector D generate a charge pulse whose amplitude QI is propor-
tional to the energy Eα deposited in the sensitive layer of the detector. A voltage pulse is
generated, whose amplitude UI is proportional to QI and consequently to the energy Eα.
With the helical potentiometer on the discriminator we can set a level UD which causes
only those pulses to be allowed to pass whose amplitude UI is greater than this level.
Thus all background pulses can be filtered out. Furthermore, square pulses of constant
amplitude UZ are formed for the counter, whose width TZ corresponds to the pulse width
at the discriminator level. Therefore, even a too low discriminator level can cause that
no more pulses are counted. This can then be seen in the discriminator curve.
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6 Experimental Exercises and Procedure

6.1 Evacuation of the scattering chamber
At the beginning of the experiment, the scattering chamber must always be evacuated.
Note that the scattering foil is very thin (µm range) and therefore very sensitive to strong
gas flows. During the experiment, also monitor the pressure in the scattering chamber. If
necessary, evactuate the chamber again. Switch off the pump when it is no longer needed.
Be sure to follow all guidelines posted at the workstation and the instructions given by
the assistants!

6.2 Discriminator curve
Record the integral pulse height spectrum (discriminator curve) using the direct α beam.
Proceed as follows:

• Open the lid of the source and the center hole by rotating the rod. Move the rod to
the position nearest to the detector.

• Look at the waveform after the amplifier with the oscilloscope.
• Measure the count rate z = N/t (N = number of pulses, t = measurement time) as

a function of the discriminator setting UD (measured in turns of the adjusting screw
(arbitrary unit) or in volts, depending on the discriminator device).

• Plot z as a function of UD (discriminator curve) and determine from it the pulse height
spectrum (dz/dUD as a function of UD) and the energy distribution of the α particles
(number versus energy). The function

f(z; A, B, C) = A erfc
(

z − B

C
√

2

)
(24)

with the complementary error function erfc and its parameters B = mean and C =
standard deviation (identical to the parameters of a normal distribution associated
with it) might be helpful.

• Compare the resulting energy distribution curve with the given one (see section 5.2.1)
by equating the two mean values and comparing the standard deviations (convert the
given FWHM). For this purpose the zero point must be chosen in such a way that the
noise level of the discriminator is just below it.

• Choose the operating point (discriminator setting UDA) for the following scattering
measurements such that only the “correct” α particles are counted. Note that the
location of the peak may still change with the scattering angle (why?).

6.3 Background radiation
Measure the background radiation of the setup and the surrounding area. Proceed as
follows:

• Close the lid of the source and the center hole by rotating the rod. Move the rod to
the position furthest away from the detector.

• Measure the count rate z = N/t for approx. 1 hour.
• Decide whether this value must be taken into account in the other measurements.
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6.4 Angular distribution
Verify the result of Rutherford’s scattering formula. Proceed as follows:

• Open the lid of the source and close the lid of the center hole by rotating the rod.
• Measure the scattering rate for at least twelve (and at most 22) x values in the range

between xmin = 50 mm and xmax = 150 mm. Select the position of the measurement
points such that they are equidistant to each other in the final plot (logarithm). For ex-
ample, the outer points in the measurement area contribute much more to the accuracy
than points near the center.

• Plot the angular distribution Na/(ΩD · t) = f(ϑ). Discuss the result.
• Record the measured values with the corresponding measurement errors in a double

logarithmic plot. Determine the parameters a and b and their errors σa and σb by
calculating the regression curve y = ax + b. The parameter a is the value of the
exponent of sin(ϑ/2) in Rutherford’s scattering formula, which in theory should equal
−4. Consider that in this case both x and y are subject to errors.

• Check the quality of your measurement results and linear fit with the χ2 test [6] and
determine the confidence interval of the parameters over χ2.

6.5 Activity of the source
Find the activity in becquerel (Bq) and curie (Ci) of the 241Am source in two different
ways and compare the results:

• Take the measurement result (at the operating point) from the above section on the
discriminator curve and extrapolate it to the whole space (when measuring only a
limited solid angle is considered).

• Determine the activity IS from the results of the previous section using equation 22.
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7 Additional Topics

7.1 Deviations from Rutherford’s scattering formula
Deviations from the scattering formula can occur at both low and high α energies. The
derivation of Rutherford’s scattering formula is based on the assumption that there is a
Coulomb interaction of two unshielded point charges Z1e and Z2e. Thus, it is assumed
that the particle velocity is sufficiently large to allow the particle to penetrate deeply into
the electron shell of the atoms and hence that the shielding of the nuclear charge by the
electron shell does not matter. The total energy of the relative motion is Er = E0

1+K1
. Very

small impact parameters can be obtained at high energies. Deviations from the scattering
formula occur when the closest possible approach D, achievable with a central collision
(ϑ = 180◦), comes within the range of nuclear forces. At the inversion point, the potential
and kinetic energies are equal:

Z1Z2ξ
2

D
= Er = E0

1 + K1
, (25)

thus
D = Z1Z2ξ

2(1 + K1)
E0

. (26)

Since the nuclear forces have an extremely short range, deviations from Rutherford’s
scattering formula occur when D reaches the order of magnitude of the nuclear radii.
The nuclear radius RK is directly proportional to the nucleon number A = N + Z in
the nucleus, with Z = proton number and N = neutron number. Assuming a spherical
nucleus, this equals [4]:

RK = r0A
1/3 . (27)

As early as 1935, the Rutherford scattering experiments yielded [4] for r0 the value of

r0 = (1.3 ± 0.1) × 10−13 cm = (1.3 ± 0.1) fm . (28)

Thus, we expect deviations to occur beyond particle energies for which D = RK1 + RK2,
i.e.:

Er = Z1Z2ξ
2

r0
(
A

1/3
1 + A

1/3
2

) . (29)

At low energies, the particles cannot get sufficiently close to the nucleus, and its charge is
partially shielded by electrons. The energies at which such shielding effects occur can be
easily estimated. We require that the closest possible approach D must be smaller than
the orbital radius a1 = a0

Z2
of the electrons in the K shell. Here a0 = 52.9 pm is the Bohr

radius. Thus we obtain the condition

Er >
Z1Z

2
2ξ2

a0
. (30)

However, it turns out that already at larger energies than estimated by equation 30,
deviations from the Rutherford cross section occur, since there are always some particle
trajectories that lie in a region where the nuclear charge is shielded by the electrons.
However, equation 30 can serve as a rough estimate.
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7.2 Energy balance of the α decay
A layer of 241Am (americium) is used as the source of α particles in the experiment. 241Am
is unstable via α decay with a half-life of 432 y.

241Am =⇒ 237Np∗ + α . (31)

The residual nucleus is 237Np (neptunium), which in turn may remain in an excited
state with discrete excitation energy EA. This energy is usually emitted in the form of
electromagnetic radiation. The kinetic energy T of the emitted particles can be calculated
by taking into account energy and momentum conservation. We initially assume an
infinitely thin source.

7.2.1 Energy balance

241Am

EA1

237Np

EA2

EA3

T3

T2

T1

T0 = Q0

mAmc2

(mNp + mHe)c2

en
er

gy

Figure 8: Energy balance of the α decay of 241Am.

The diagram showing the energy balance of the α decay can be seen in figure 8. In
radioactive decay, the total energy is conserved. Therefore, we can establish the following
balance equation:

m(241Am)c2 =
(
m∗(237Np) + m(4He)

)
c2 + T =

(
m(237Np) + m(4He)

)
c2 + EA + T , (32)

Q0 =
(
m(241Am) − m(237Np) − m(4He)

)
c2 . (33)

Here m∗(X)c2 = m(X)c2 + EA is the rest energy of the excited nucleus X. Q0 is called
decay energy. It is the maximum value of kinetic energy T available. The masses of the
neutral atoms are to be used here. For simplicity, we write: m(241Am) = mAm, etc. So we
have

T = Q0 − EA = Tα + TNp . (34)
Due to the discrete values EAi of the excitation energy of the residual nucleus, different
groups of α particles with discrete energies Tαi are also emitted:

Ti = Qi = Q0 − EAi = Tαi + TNpi . (35)

The kinetic energy Ti is distributed between the α particle and the residual nucleus.
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7.2.2 Momentum balance

Since the decay occurs from a stationary 241Am nucleus, we obtain:

0 = p⃗α + p⃗Np , (36)

thus
p2

α = p2
Np , TNp = mαTα

mNp
. (37)

And so we have:
Tαi = Qi

1 + mα

mNp

= Q0 − EAi

1 + mα

mNp

. (38)

The intensities Iαi of the most intense α groups are given in table 1.

Table 1: Excitation energies and transition probabilities for the α decay of 241Am into 237Np.

i 0 1 2 3 4

EAi [keV] 0 33.20 59.54 102.96 158.51

Iαi [%] 0.34 0.22 84.5 13.0 1.6

Tαi [MeV]

The blank line should be completed by the reader, see theoretical exercises in chapter 3.1.
The required values for the masses are given in table 2 in atomic mass units u (1 u c2 =
931.49432 MeV).

Table 2: Masses of the particles involved in α decay.

Atom / Particle Mass [u]
α 4.001487900
4He 4.002603250
237Np 237.048167253
241Am 241.056822944

Figure 9 shows the energy distribution of α particles as measured in the VP Alpha I
experiment. Here, a “thin” α source is used (specific data not provided). The peaks
have a width of about 20 keV, which is mainly due to the detector and electronics. The
distribution shows the main group with a share of about 85 percent and the three other
groups, which are particularly clearly visible in the logarithmic plot.

7.3 Solid angle
The solid angle dΩ under which an area element dA is seen from a reference point 0 at
distance r is calculated to be (see figure 10):

dΩ = dA⃗ · e⃗r

r2 . (39)
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Figure 9: Energy distribution of α particles originating from a thin Am source. Top:
Ordinate linear. Bottom: Ordinate logarithmic.

The total solid angle Ω is obtained by integration over the total area A:

Ω =
∫

A
dΩ where [Ω] = sr . (40)

To calculate the number of α particles hitting the detector, we additionally need the solid
angles ΩF and ΩD (see figure 3).

7.3.1 Calculation of ΩF

The solid angle under which the source sees the scattering foil can be easily calculated
due to the cylinder symmetry at hand. With dA = 2πrdr we obtain:

ΩF = 2π
((

1 + (R1/δ)2
)−1/2

−
(
1 + (R2/δ)2

)−1/2
)

= 0.0998 sr . (41)
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Figure 10: Definition of the solid angle.

7.3.2 Calculation of ΩD

The calculation of ΩD, i.e. of the solid angle under which the detector with the area
AD = πR2

D is seen from the scattering foil, on the other hand, turns out to be somewhat
more difficult. The exact calculation ΩD2 (see figure 11) yields elliptic integrals which
can be solved only numerically. Assuming AD ≪ R2 = R2

A + x2 we obtain the following
approximation:

ΩD1 = πR2
Dx

(x2 + R2
A)3/2 . (42)

The results are shown in figure 11. For x ≥ 17 mm the relative error is less than 1%.

7.4 Specific energy loss and stopping power
7.4.1 Theory

When charged particles pass through matter, they suffer some loss of energy and a change
in direction. This is caused by the following interaction processes with the target atoms:

1. inelastic collisions with the electrons
2. elastic collisions with the atomic nuclei (Rutherford scattering)

Process (1) leads to excitation or ionization of the target atoms (electronic energy loss),
while process (2) (nuclear energy loss) leads mainly to displacement of the target atoms
(radiation damage) and change of direction of the incident particles. The energy loss per
path length (specific energy loss) increases with decreasing energy, reaches a maximum
and then drops steeply at the end of the range of the particles (see figure 13). Due to
the statistical character of the processes, the incident particle beam suffers energy and
angular straggling. For heavy charged particles (mT ≫ me) the nuclear energy loss is
negligible above about 1 MeV per nucleon.
Figure 12 shows the share of nuclear energy loss in the total energy loss in % for the
bombardment of air and gold with α particles. The nuclear share is smaller than 1% for
particle energies ET larger than 200 keV. Thus, for our experiment, the electronic energy
loss is the significant process. Bethe and Bloch derived a formula for the electronic energy
loss dE per path length unit dx in a correct quantum mechanical calculation (Bethe-Bloch
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Figure 11: Detector solid angle ΩD.

formula), which can be written in a nonrelativistic approximation in the following form:

−dE

dx
= 2πz2(e2/(4πε0))2

ET

mT

me

ne ln
(

4ET

⟨EB⟩mT

me

− K

)
, (43)

or
− 1

N

dE

dx
= ε = 2πz2(e2/(4πε0))2

ET

mT

me

Z ln
(

4ET

⟨EB⟩mT

me

− K

)
. (44)

The quantities −dE
dx

or − 1
N

dE
dx

or −1
ρ

dE
dx

are called stopping power for the corresponding
particle-target combination. Depending on the definition, different units are obtained.
The quantities used here are listed in table 3.
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Figure 12: Share of nuclear stopping power εn in total stopping power εt for α particles in air
and gold (see [7]).

Table 3: List of symbols and quantities used in the Bethe-Bloch formula.

Symbol Quantity Value Unit
e elementary charge −1.602 × 10−19 A s
mec

2 electron rest energy 0.511 MeV
NA Avogadro constant 6.022 × 1023 1/mol
ε0 dielectric constant 8.85 × 10−12 As/Vm
ξ2 = e2

4πε0
1.44 eV nm

u atomic mass unit 931.494 MeV/c2

z atomic number of the incident particle
mT mass of the incident particle
ET energy of the incident particle
Z atomic number of the target atoms
⟨EB⟩ average ionization potential
ne = N · Z electron density of the target
N = ρNA/M number density of target atoms gold: 5.91 × 1022 cm−3

ρ volume density of the target
M molar mass of the target atoms
K correction constant

For α particles we thus get:

− 1
N

(
dE

dx

)
α

= ε = 3.80
Eα/MeVZ ln

(
548.58(Eα/MeV)

⟨EB⟩/eV − K

)
eV

1015atoms cm−2 . (45)

The average ionization potential ⟨EB⟩ and the correction constant K are determined from
experiments.
If no experimental material is accessible, ⟨EB⟩ can be calculated by the following approx-
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Table 4: The constants ⟨EB⟩ and K in the Bethe-Bloch formula for the deceleration of α
particles in gold and air, determined by fitting to trim calculations [7].

Material ⟨EB⟩ [eV] K

gold 1059.81 -1.037
air 94.22 0.710

imate formula [5]:

⟨EB⟩
Z

=
(

12 + 7
Z

)
eV , Z < 13 , (46)

⟨EB⟩
Z

=
(
9.76 + 58.8Z−1.19

)
eV , Z ≥ 13 . (47)

The Bethe-Bloch formula only considers the electronic energy loss. Since the nuclear
energy loss increases with decreasing energy, considerable deviations occur in this range.
In figure 13 the stopping power of gold for α particles is shown. For α energies larger
than 1.3 MeV, the deviations are smaller than 1%.
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Figure 13: Stopping power of α particles in gold. For Eα > 1.3 MeV the error of the
Bethe-Bloch formula is less than 1%.

7.4.2 Energy loss in the scattering foil and in the detector entry window

The α particles hit the scattering foil with the mean energy E0. In the scattering foil
(thickness d) they are decelerated before the impact (energy loss ∆Ein), continue to lose
energy during elastic scattering (∆ES = (1 − K2)(E0 − ∆Ein)) and then again when
leaving the foil (energy loss ∆Eout). Furthermore, an energy loss ∆ED occurs in the entry
window of the detector (thickness dF ). In total, this equals an energy loss of

∆Etot = ∆Ein + ∆ES + ∆Eout + ∆ED . (48)

We assume that the scattering process of α particles takes place in the center of the foil
on average and that the energy loss is small, so we can put ∆E ∼= −(dE

dx
) · x if x is the

distance traveled in the particular region of the foil. This gives us the opportunity to
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Figure 14: Scattering geometry and energy losses. The regions where energy loss occurs are
indicated in red. In blue and green, respectively, the two “extreme” paths are hinted at, which
are helpful for the considerations concerning the finite dimensions of the scattering geometry.

calculate the energy EI = E0 − ∆Etot at which the α particles enter the sensitive region
of the detector and to estimate the extent to which the differential cross section needs to
be corrected.

7.5 Statistical analysis of the measurements
The statistical analysis of measurements is described extensively in the literature. For a
quick overview we recommend [5] and [6]. We assume that we have taken measurements
of a variable y at n points xi and obtained for them the values yi with an error of σi

(i = 1, 2, . . . , n). We are now looking for the relationship between the quantity x and
y. For this we try to fit a function f(x; a1, a2, . . . , am) with the unknown parameters aj

to our measured values, which should represent the progression of the measurements as
best as possible. The number of measurements must of course be larger than the number
of parameters. The parameters aj can be determined by the method of least squares.
This method states that the parameters aj are optimally chosen if the following sum S is
minimal:

S =
N∑

i=1

(
yi − f(xj; aj)

σi

)2

. (49)

We see that S is just the sum of the squared deviations of the data points yi - weighted by
the squares of the corresponding errors σi - from the theoretical curve f(xi). Normally,
it is assumed that the independent variables xi are error-free, or that the errors in x can
be neglected with respect to the errors in y. The quantities σi are then the errors of yi.
In cases where both errors are comparable, neglecting the errors of x leads to incorrect
parameters aj and an underdetermination of their errors. For comparable errors in x and
y, the quantities σi must be replaced by [5]:

σ2
i → σ2

y +
(

df

dx

)2

σ2
x , (50)

24



where σx and σy are the errors of x and y. To determine the constants aj, the system of
equations ∂S

∂aj
= 0 must be solved. In our case we want to fit a straight line through our

measurements, i.e.:
y = f(x) = ax + b . (51)

The target quantity Y is in any case a random variable, while the influencing variable
X can be random, but does not have to be. The latter means that for a fixed value X,
the quantity Y can assume different (randomly distributed) values. Thereby xi are the
set values of the quantity X and yi are the measured values of the quantity Y at the
position xi. The parameters a and b, and their errors σa and σb, can be calculated using
the following equations [5]:

a = EB − CA

∆ , b = DC − EA

∆ , σ2
a = B

∆ , σ2
b = D

∆ , (52)

where ∆ = DB − A2 and

A =
∑ xi

σ2
i

, B =
∑ 1

σ2
i

, C =
∑ yi

σ2
i

, D =
∑ x2

i

σ2
i

, E =
∑ xiyi

σ2
i

. (53)

In our case we can use the initial value a = −4 (theoretical result) to solve these equations.
Furthermore, from these equations 52 and 53 it can be observed that the calculation of
the means, variances, etc. is done with weights wi which have the following form:

wi =
1

σ2
i∑ 1
σ2

i

. (54)

The denominator is used for normalization. In the case where all σi are equal, the ex-
pressions must be the same as in the cases without normalization. As an example, we
calculate the weighted mean of the quantity X:

x̄ =

n∑
i=1

xi

σ2
i

n∑
i=1

1
σ2

i

= A

B

for σi=σ======⇒ x̄ =

n∑
i=1

xi

σ2

n∑
i=1

1
σ2

=
1

σ2

n∑
i=1

xi

n 1
σ2

= 1
n

n∑
i=1

xi . (55)

We now have to investigate whether our data can actually be approximated by the function
f(x) (in our case a straight line) and how good this approximation is. This question can
only be answered in the context of probability theory. The corresponding test is called
χ2 test. In the literature (see e.g. [5] or [6]) it is shown that under the condition that
the values yi are normally distributed with mean f(xi; aj) and variance σ2

i , the quantity
S defined in equation 49 corresponds to the χ2 distribution function. In our case, these
conditions are satisfied. Since the quantities yi are random, χ2 is also a random quantity.
It can be shown that χ2 has the following probability density:

Pχ(z) =

(
z
2

)(ν/2)−1
exp

(
− z

2

)
2Γ(ν

2 ) , (56)

where z > 0 and Pχ(z) = 0 for z ≤ 0. Here Γ(ν
2 ) is the gamma function. The integer

ν = n − m is the number of degrees of freedom and is the only parameter of the distri-
bution. The quantity n is the number of our measurement points and m is the number
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Figure 15: The χ2 distribution (Pχ(z) as a function of z = χ2) for different values of the
number of degrees of freedom ν (from [5]).

of parameters (constraints) already determined from the measurements. For example,
m = 2 if we have determined the two parameters for the straight line equation. In figure
15, the function Pχ(z) is plotted as a function of z = χ2 for different values of ν. The
mean µ and variance σ2 of Pχ(z) equal µ = ν and σ2 = 2ν.
A first and quick test for the quality of our linear fit is to calculate the quantity S
itself according to equation 49. If each value yi is just off the fit curve by σi, the sum
should equal about n, or more precisely ν. That means for a good fit the experimentally
determined reduced χ2

χ2
r = χ2

ν
= S

ν
(57)

should approximately equal 1. Large values of S indicate that either the yi values scatter
too much or the errors were estimated to be too small. A value of S that is too small,
on the other hand, means that either the errors σi were overestimated or the values
yi do not scatter sufficiently, e.g. that they were deliberately altered to achieve good
results or that the detection electronics are defective. Since the values yi obey a normal
distribution, about 1/3 of the measured values (yi ± σi) should lie outside the fit curve!
However, a more detailed analysis of our measurement and the fit of the measured values
requires statistical considerations. We proceed similarly to the error function Φ(z) which
has a normal distribution (Gaussian distribution) as probability density. The starting
point is the question (hypothesis H0) whether an (empirical) distribution obtained in
the experiment deviates only by chance from a theoretical distribution given a certain
probability of error α. As a test variable we use χ2, which expresses the deviation between
empirical and theoretical distribution, and ask for the probability to find χ2 within certain
limits. We will explain the general procedure with an example. The result of our scattering
measurement is shown in figure 16.
We now specify e.g. a probability of error of α = 0.05 (5%). On the basis of our measure-
ment (sample) we now try to specify an interval J which covers χ2 with a probability as
large as possible. If we denote this probability (confidence level) with q = 1 − α and the
boundaries of the interval J with Gu and Go, i.e. if J = (Gu, Go) with Gu < Go holds,
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Figure 16: Scattering measurement with n = 12 measurement points and the fit curve
y = ax + b, with a = −3.98, σa = 0.14, b = −0.12, σb = 0.03, ν = 12 − 2 = 10, S = 7.15,
S/ν = 0.715.

this requirement means:

P (χ2 ≥ Gu) =
∫ ∞

Gu

Pχ(z)dz = 1 − α

2 (58)

and
P (χ2 ≥ Go) =

∫ ∞

Go

Pχ(z)dz = α

2 . (59)

Combining both requirements yields

P (Gu < χ2 < Go) =
∫ Go

Gu

Pχ(z)dz = q = 1 − α . (60)

Figure 17 illustrates this relation for the χ2 distribution with ν = 6 degrees of freedom.
The limits Gu and Go are obtained by cutting off the area α

2 on both sides under the curve
in the graph of the (asymmetric) density Pχ(z) of the χ2 distribution. Thus we obtain for
the confidence limits:

Gu = χ2
ν;1− α

2
, Go = χ2

ν; α
2

. (61)
The values χ2

ν;q can be obtained from the table for the χ2 distribution. Equation 60 can be
interpreted as follows: Out of 100 calculated confidence intervals obtained from samples
of the same population with parameter S = χ2, on average (1 − α) · 100 = q · 100 overlap
the true parameter χ2. Only 100 · α of all samples on average provide bounds that do not
contain χ2. For our example in figure 16 (ν = 10 and α = 0.05), we extract the values
of Gu/ν = χ2

r = χ2
ν;1− α

2
/ν = 0.32 and Gu/ν = χ2

r = χ2
ν; α

2
/ν = 2.07 from table 5 by linear

interpolation. We have obtained S/ν = 0.715 as the experimental value. This value is
within the given limits, so we can accept our hypothesis H0 that our measurement points
can be approximated by the calculated fit curve.
In general, it is assumed that for values of P between 0.1 and 0.9 the fit is acceptable,
whereas for P < 0.02 and P > 0.98 the results are highly questionable and need to be
verified.
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Figure 17: Confidence limits for χ2 with probability of error α.
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Table 5: χ2 distribution (see [6]) for 0.99 ≥ α ≥ 0.001. Values of χ2
r = χ2

ν;q/ν corresponding
to the probability P (χ2 > χ2

ν;q) = α that χ2
ν;q is exceeded.

ν 0.99 0.98 0.95 0.90 0.80 0.70 0.60 0.50

1 0.00016 0.00063 0.00393 0.0158 0.0642 0.148 0.275 0.455
2 0.0100 0.0202 0.0515 0.105 0.223 0.357 0.511 0.693
3 0.0383 0.0617 0.117 0.195 0.335 0.475 0.623 0.789
4 0.0742 0.107 0.178 0.266 0.412 0.549 0.688 0.839
5 0.111 0.150 0.229 0.322 0.469 0.600 0.731 0.870
6 0.145 0.189 0.273 0.367 0.512 0.638 0.762 0.891
7 0.177 0.223 0.310 0.405 0.546 0.667 0.785 0.907
8 0.206 0.254 0.342 0.436 0.574 0.691 0.803 0.918
9 0.232 0.281 0.369 0.463 0.598 0.710 0.817 0.927

10 0.256 0.306 0.394 0.487 0.618 0.727 0.830 0.934
11 0.278 0.328 0.416 0.507 0.635 0.741 0.840 0.940
12 0.298 0.348 0.436 0.525 0.651 0.753 0.848 0.945
13 0.316 0.367 0.453 0.542 0.664 0.764 0.856 0.949
14 0.333 0.383 0.469 0.556 0.676 0.773 0.863 0.953
15 0.349 0.399 0.484 0.570 0.687 0.781 0.869 0.956
16 0.363 0.413 0.498 0.582 0.697 0.789 0.874 0.959
17 0.377 0.427 0.510 0.593 0.706 0.796 0.879 0.961
18 0.390 0.439 0.522 0.604 0.714 0.802 0.883 0.963
19 0.402 0.451 0.532 0.613 0.722 0.808 0.887 0.965
20 0.413 0.462 0.543 0.622 0.729 0.813 0.890 0.967

ν 0.40 0.30 0.20 0.10 0.05 0.02 0.01 0.001

1 0.708 1.074 1.642 2.706 3.841 5.412 6.635 10.827
2 0.916 1.204 1.609 2.303 2.996 3.912 4.605 6.908
3 0.982 1.222 1.547 2.084 2.605 3.279 3.780 5.423
4 1.011 1.220 1.497 1.945 2.372 2.917 3.319 4.617
5 1.026 1.213 1.458 1.847 2.214 2.678 3.017 4.102
6 1.035 1.205 1.426 1.774 2.099 2.506 2.802 3.743
7 1.040 1.198 1.400 1.717 2.010 2.375 2.639 3.475
8 1.044 1.191 1.379 1.670 1.938 2.271 2.511 3.266
9 1.046 1.184 1.360 1.632 1.880 2.187 2.407 3.097

10 1.047 1.178 1.344 1.599 1.831 2.116 2.321 2.959
11 1.048 1.173 1.330 1.570 1.789 2.056 2.248 2.842
12 1.049 1.168 1.318 1.546 1.752 2.004 2.185 2.742
13 1.049 1.163 1.307 1.524 1.720 1.959 2.130 2.656
14 1.049 1.159 1.296 1.505 1.692 1.919 2.082 2.580
15 1.049 1.155 1.287 1.487 1.666 1.884 2.039 2.513
16 1.049 1.151 1.279 1.471 1.644 1.852 2.000 2.453
17 1.048 1.148 1.271 1.457 1.623 1.823 1.965 2.399
18 1.048 1.145 1.264 1.444 1.604 1.797 1.934 2.351
19 1.048 1.142 1.258 1.432 1.586 1.773 1.905 2.307
20 1.048 1.139 1.252 1.421 1.571 1.751 1.878 2.266
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