Nuclear Magnetic Resonance (NMR): Spectroscopy and Imaging

Toni Shiroka

Laboratorium für Festkörperphysik, ETH Zürich, Switzerland LNS, Paul Scherrer Institut, Villigen PSI, Switzerland

/P – Advanced Physics Laborato :TH Zurich, 23 October 2017

Experimental investigation in physics

Black-box approach: Investigate the response of an unknown system to external perturbations.

It works, but **too "expensive"** (time, money, effort). Often large-scale facilities required.

Are there **alternative ways** to investigate matter? **Yes!** Use matter itself: nuclei (**NMR**) or e- (**ESR**) as probes.

* Also different, e.g., ARPES: photon in/electron out

Using (nuclear) matter to probe matter!

Nuclear magnetic resonance (NMR): far reaching impact in science!

P. Zeeman 1902

F. Bloch*, E. M. Purcell 1952

K. Wüthrich* 2002

1937 I. Rabi

1991 R. Ernst*

2003

P. Lauterbur, P. Mansfield

* ETH alumni

What is nuclear condensed matter?

Conceptual schematic of nuclear condensed matter physics

G. Schatz, A. Weidinger, M. Deicher, Nukleare Festkörperphysik, 4. Aufl. (Vieweg+Teubner, Wiesbaden, 2010).

NMR advantages in studying matter

Technique

- Magnetization meas.
- Magnetic **resonance**
- Neutron diffraction

AdvantagesDrawbacksEasy, small samples / macroscopic, sensitive to impuritiesExtreme conditions, small samples / limited local infoComplete (ω,q) spectrum / sample size, large-scale facilities

In terms of time/effort/environments/difficulty **NMR** probably offers the **best balance** for the information it can provide.

ncr. complexity

In case of **demanding conditions** (field, pressure, temperature, or sample size) often NMR is **the only technique** available.

H = 45 T *p* = 10 GPa *T* = 10 mK *m* = 1 mg

NMR I: Static properties (Line shapes)

Nuclear magnetic resonance (NMR): selective absorption of EM radiation by nuclei with nonzero spin placed in an external magnetic field.

 NMR probes local magnetic field by means of hyperfine coupling

$$\boldsymbol{\omega}_{n} = \gamma_{n} \boldsymbol{H}_{loc} = \gamma_{n} \left(\boldsymbol{H}_{0} - \boldsymbol{A}_{n,k} < \boldsymbol{S}_{k} \right)$$

HF coupl. Spin polariz.

$$(\omega_n - \omega_0)/\omega_0 = K \propto A\chi_{loc}(\omega \approx 0)$$

Static NMR properties

- Width of NMR line → Distribution of <S_z(r)>
- **Shift** of NMR line \rightarrow Magnetic susceptibility $\chi_{loc}(\omega \approx 0)$

NMR II: Dynamic properties (Relaxation)

- NMR dynamic properties → Flow of energy between spins and surround.
 Access to local magnetic field fluctuations
- Spin-lattice relaxation (T₁) is a direct consequence of the fluctuationdissipation theorem. Lost energy absorbed by electron-spin excitations.

By measuring $1/T_1$ we are basically exploring the electron spin-spin correlation function ...

NMR: Micro- and macroscopic view

B M M RF irrad.

Equilibrium: ~1 ppm excess in spin-up state creates a net magnetization

Excitation affects phase and distribution between spin-up and spin-down, rotating bulk magnetization

Equilibrium of spin-up/spin-down: **longitudinal relaxation T**₁ Equilibrium (de-phasing) of spins: **transverse relaxation T**₂

The (new) VP NMR station

NMR laboratory bench

NMR Spectrometer

LCD Console (Control)

Features of the NMR spectrometer

Spectrometer parameters:

Main field:	0.21 T (AlNiCo magnet)	
Homogeneity:	10 ⁻⁶ T/cm	
Field gradient:	0 – 2×10 ⁻⁴ T/cm	
Sample size:	8 mm diam., 10 mm heigh	
Frequency:	9 MHz (¹ H NMR)	
RF channels:	0 and 90° (quadrature)	
SN ratio (typ.):	100	

Wide range of experiments:

Detection of free nuclear precession (FID) Determination of optimal 90° pulse width Investigation of (Hahn) spin-echoes T_1 relaxation time meas. via inversion recovery T_2 spin-spin relaxation time meas. (Carr-Purcell) Measurements of molecular diffusion Magnetic resonance imaging (MRI)

NMR data: screenshots + digital

Data can be saved in different formats:

- Screenshots (documentation) —
- Digital data (further analysis)

testdata.sig

	2 V/div	100 us/div	1
	Volts	.005 ms/ch	
	0 8.8667		(
Fit + display	000	1 8.20	
	000	2 5.80	
	333	3 5.13	
	000	4 5.00	4
	333	5 4.93	ļ

Scope of the experiments

Goal: familiarize with **conceptual** framework + carry out **practical** experiments.

Two experiment categories: preliminary (easy) and research grade (more difficult).

Preliminary exp.

E.g.: Measure 90° pulse width

Research grade exp.

E.g.: Perform magnetic resonance imaging (MRI)

Conclusion and perspectives

- NMR is among the most **demanding** experiments. Concepts from quantum and statistical physics, electromagnetism, RF techniques should be well mastered **before** starting the experiment.
- Problems with identifying sources of errors. Difficulties in (apriori) distinguishing crucial errors from irrelevant ones.
- High scattering in student preparation. Some quite independent, others under close guidance. Generally students are satisfied, especially after learning how to overcome difficulties.