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1 Introduction

Harmonic oscillators are fundamental concepts in both classical and quantum mechanics, a
(mathematical) pendulum being a simple example that can easily be calculated analytically
for small displacements.

Generalising the concept a little by e.g., allowing large displacements increases the com-
plexity of the problem remarkably (remember the assumption sin(ϕ) ≈ ϕ, which now no
longer holds). For example, one has to take into account terms of higher order like the
restoring force αx3 or nonlinear damping ηx2ẋ.
More involved systems than a mathematical pendulum make it further necessary that the
parameters (e.g. length and mass of the pendulum, spring constant) are not constant over
time but change with a certain frequency.

This allows to describe a wide range of new problems, for example a ship experiencing
parametric rolling.

On the other hand, parametric oscillators, i.e. oscillators with variable parameters,
play an important role in many areas of modern experimental physics as they offer inter-
esting properties which can be exploited. Examples are not only parametric driving (which
you will do in this experiment) but range from classical low-noise signal amplification to
quantum parametric squeezing.

Besides their importance in modern physics, behaviour and applications of parametric
resonators are still an active field of research, as the non-linear properties can lead to rich
physics under different settings. Understanding the underlying physics is of paramount
importance.

This experiment is a simplification of the experiment done by A. Leuch et al. at ETH,
see [1]. The student lab setup allows, in principle, to study many phenomea ranging
from nonlinear dynamics to parametric symmetry breaking, parametric amplification, and
noise squeezing. The goal is to understand the main behaviours of non-linear parametric
oscillators by observing many basic phenomena under different conditions, analogously as
they were observed in [1]. By doing so, one also grasps on the techniques used for measuring
small signals in the presence of significant noise.
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2 Nonlinear Resonators

We limit ourselves to a nonlinear resonator of Duffing type and consider terms up to third
order. The equation of motion is then given by, see [2],

ẍ+ Γ ẋ+ η ẋx2 + αx3 + Ω2(t)x =
F (t)

M
, (1)

where Ω(t) is the (time-dependent) natural resonance frequency (for small amplitudes),
F (t) is a driving force, M is the mass of the oscillator, and Γ, η and α are the coefficients
of a nonlinear spring effect and of nonlinear damping, respectively. Here, the parametric
modulation is represented via time dependence of Ω.
For small amplitude oscillations, (1) reduces to the equation of motion of a damped har-
monic oscillator.

The quality factor (or Q-factor) of such an oscillator is related to the ratio of stored and
dissipated energy in the oscillator, and for the harmonic oscillator determines the shape of
the Lorentzian response to a driving force. It is given by

Q =
Mω0

Γ
=

1

2ζ
, (2)

where ω0 is the natural resonance frequency and ζ is the damping ratio.

If oscillation amplitudes are large, nonlinear terms in (1) cannot be neglected and lead to
anharmonic behaviour.

2.1 The Anharmonic Resonator

We consider now a special case of (1), where the driving force is of the form F (t) =
F0 cos(ωt), and Ω(t) = ω0 = const., i.e. there is no parametric modulation.
For large oscillations, theDuffing term α is responsible for the main damping factor of the
oscillator. The resonance frequency ωres becomes dependent on α and the motional
amplitude x0 of the oscillation; it is shifted from the natural resonance frequency ω0

according to

ωres = ω0 +
3

8

α

Mω0

x2
0 (3)

The response of the resonator to the driving frequency ω becomes non-Lorentzian, mean-
ing that the shape of the resonance peak is distinctly different from that of a harmonic
oscillator.

2.2 The Parametric Resonator

If Ω(t) is not constant, the resonator is called a parametric resonator. Parametric
resonance can be achieved by modulating the spring constant at twice the frequency of the
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driving force close to the resonance frequency, i.e. of the form

Ω2(t) = ω2
0(1 + λ cos(2ωt)), F (t) = F0 cos(ωt+ ϕ), (4)

where ω ≈ ωres, λ is the modulation depth, and ϕ is a phase difference.

The oscillation amplitude experiences a gain relative to the case λ = 0 given by

G =

∣∣∣∣e−π/4

(
cos(ϕ+ π/4)

1− λQ/2
+ i

sin(ϕ+ π/4)

1 + λQ/2

)∣∣∣∣ . (5)

There is a degeneracy for the phase ϕ, since G(ϕ) = G(ϕ+ π). For ϕ = −π/4, the gain is
maximal, while for ϕ = π/4, G is smaller than 1, so-called squeezing.

At the instability threshold λth = 2/Q, the gain G diverges, and there are no stable
solutions of the linear oscillator. The term from nonlinear spring constant becomes more
impotant and thus saturate the diverging ampltude. The resonator can thus undergo large
oscillations even without an external driving force (F0 = 0), and is damped mainly by the
Duffing term in (1).
Beyond the instability threshold, the oscillator can assume multiple amplitudes for a given
driving frequency. Which amplitude is reached depends on the previous state of the oscil-
lator, a so-called hysteresis.
If the resonator is not settled in one of these phases, the amplitude will behave differently,
and no large scale oscillation will be observed.

The instability region over omega where oscillation is possible depends on the modu-
lation depth λ. Outside this region, the phase of the resonator is not well-determined,
behaves erratically, and the oscillation is not maintained. This instability region is known
as the Arnold’s Tongue.
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Figure 1: Schematic illustration of the oscillation amplitude and phase (relative to a ref-
erence signal), as a function of the modulation frequency ω.

3 Lock-in Amplifiers

This experiment aims at measuring periodic signals with significant noise. To solve this
task, a lock-in amplifier is used.

In order to understand how a lock-in amplifier it is helpful to first recall the following
identity

sin(a) sin(b) =
1

2

(
cos(a− b)− cos(a+ b)

)
(6)

A lock-in amplifier multipliesthe measured signal Asig to a reference signal Aref . The inputs
are given by

Asig = Vsig sin(ωsigt+ θsig) Aref = Vref sin(ωreft+ θref) (7)

Making use of Equation (6), multiplication of the two signals leads to

Amult =
1

2
VsigVref

[
cos

(
(ωsig − ωref)t+ θsig − θref

)
− cos

(
(ωsig + ωref)t+ θsig + θref

)]
(8)

Next, Amult is sent through a low pass filter, removing high frequency signals: only signals
with ωsig − ωref smaller than the bandwidth of the filter can pass. In particular, the
cos(ωsig + ωref) component cannot pass. A digital low pass filter can be thought of as
averaging over small time steps such that high frequencies will cancel out.

For ωsig = ωref , the output signal is given by

Aout =
1

2
VsigVref cos

(
θsig − θref

)
(9)

This is an DC signal unless θsig − θref changes over time. The process of multiplying and
then filtering is known as demodulation, which in general means to filter out a desired
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frequency signal from a high frequency carrier wave.
Any signal, like noise, whose frequency differs from the one of interest is strongly filtered
out. However, it may lead to a low frequency output if ωref ≈ ωnoise, meaning that it can
just pass the low pass filter.

By taking the reference signal, splitting it up and shifting one of them by π/2, we can
perform the procedure described above twice. Labelling the two outputs AX(= Aout) and
AY (= Ashifted), we obtain

A2
X =

1

4
V 2
sigV

2
ref cos

2
(
θ
)
, A2

Y =
1

4
V 2
sigV

2
ref sin

2
(
θ
)
, (10)

where θ := θsig − θref is the relative phase. The following important properties hold:√
A2

X + A2
Y =

1

2

∣∣VsigVref

∣∣ = 1

2
VsigVref (11)

tan−1
(AY

AX

)
= θ (12)

Where we used that Vsig, Vref > 0 since they are amplitudes. A schematic of a lock-in
amplifier can be seen in Figure 2.

We have now fully characterised the signal with respect to the reference signal. Equations
(11) and (12) allow to represent it in phase space.

For this experiment, the lock-in amplifier used is the MFLI Lock-in Amplifier by Zurich
Instruments, see [3].
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Figure 2: Schematic of a Lock-In Amplifier. AX and AY are the x and y components,
respectively, of the signal in phase space. Part of the reference signal can be frequency
doubled and amplified if needed to serve as a driving force.
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4 LabOne

The MFLI Lock-in Amplifier is controlled using the LabOne software, see [4]. LabOne
comprises many important and useful features, some of which are outlined below.

i) The Numeric functionality, which gives the numerical value of the current signal.

ii) The Plotter, which plots the signal as a function of time. The time interval can be
adjusted. One can plot simultaneously the demodulator amplitude R, X and Y , and
the phase ϕ.
For long time intervals, the file size is big (multiple MB for an interval [−60 s, 0 s]).

iii) The Sweeper, where one variable, in this case the driving frequency, is varied, and the
signal is recorded as a function of this variable. One can adjust the sweep-interval,
step-size, waiting time (time, before a new data point is collected), and the number
of data points collected per step. Choosing sensible settings for the waiting time and
data points per step can improve signal to noise ratio, while the step-size is crucial for
observing hysteresis behaviour.
The driving frequency sweep-interval can be swept sequentially (from low to high
frequencies), in reverse, or in both directions, bidirectional.

iv) The Scope, which collects data over a range of frequencies and performs a Fast Fourier
Transform (FFT). The data-collection frequency and frequency interval can be varied.
The scope can be used to find natural frequencies (normal modes) of the system.

v) The DAQ functionality, which acquires and displays the signal and can be operated
for single measurements as well as continuous ones.

LabOne can be used to control the internal reference signal of the MFLI Lock-in Amplifier
as well as generating an output signal. The output signal is obtained by adjusting the
reference signal. These adjustments include the amplification of the signal, the relative
phase to the reference signal, as well as setting the ratio of the output and reference
frequencies ωoutput/ωref . For driving force measurements the ratio is set to 1, for parametric
resonance measurements the ratio is set to 2.

Collected data can be saved directly from LabOne into .txt or .csv files.
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5 Experiment

5.1 Set-Up

Vparam

Vdrive

Amplifier

String

Piezoelectric 
crystal
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Figure 3: The set-up for driving force and parametric resonance measurements. Vparam and
Vdrive are controlled by the lock-in amplifier. Vmeas is the measured voltage, which is input
into the lock-in amplifier. Vparam is amplified by an external amplifier.

The oscillator considered in this experiment is a steel string, as depicted in Figure 3.
Driving Force. A magnet is attached to the string. By passing an AC current through
either coil A or B, the string is excited. Vdrive is output by the lock-in amplifier at the same
frequency as the reference signal.
Parametric Modulation. To one clamp of the string, a magnet is attached. By applying
a current to coil C, the magnet is moved, changing the length of the string. The natural
frequency of the string is thus parametrically modulated. Vparam is output by the lock-in
amplifier at twice the frequency of the reference signal, and is amplified in an external
amplifier.
The output signal of the MFLI Lock-in Amplifier must not exceed 1V.

The coils A and B can serve as a detector, because the oscillating magnet induces a voltage
across the coil. Alternatively, to improve the signal-to-noise ratio, a piezoelectric crystal is
placed under one of the string clamps. The string oscillation compresses the crystal, thus
creating a voltage with amplitude proportional to the oscillation amplitude. The signal
Vmeas is sent to the MFLI Lock-in Amplifier (signal port IN).
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5.2 Measurements

The goal of this experiment is to observe nonlinear behaviour of the resonator, as well as
the effects of parametric driving, in particular hysteresis behaviour.

- Start the MFLI Lock-in Amplifier and LabOne. Familiarise yourself with the interface.

- Estimate the natural frequency of the string by using the Scope.

→ What are sensible settings for the frequency range and sampling rate?

→ How can you excite a string oscillation? (Do not touch the string directly.)

→ Which peaks are caused by environmental factors?

→ Of the remaining peaks, which is the frequency around which measurements should
be conducted?

- Set up the experiment for measurements with a driving force and no parametric modu-
lation.

- Use the Sweeper to find the response of the system as a function of driving frequency for
different driving voltages.

→ Choose appropriate step size, waiting time, and sweep interval. To estimate these
values, one can use the Plotter, which records in real time the Lock-in amplifier
readouts, to observe the settling time after being excited of the oscillator.

→ How does the shape of the response curves change for different driving voltages? Is
it Lorentzian? Fit the data and extract Q.

→ How does the resonance frequency change for different driving forces? Compare this
to (3).

- Use the Plotter to measure the ring-down (decay of the signal from a steady oscilla-
tion) near resonance. Does the amplitude decay exponentially? Which parameter in (1)
does the exponential decay correspond to (at small amplitudes)? Does the phase of the
oscillation affect the ring-down?

- Set up the experiment for measurements with parametric modulation and no driving
force.

- Measure the ring-up (settling of the oscillation from rest to a steady state) of the
oscillation into both the degenerate phase states for parametric driving, using the Plotter.
Then, measure the ring-down from the states. Can you fit additional parameters in (1)?

- Use the Sweeper and sweep over the modulation frequency for different modulation depths
λ. Note: The sweep should be done in the direction opposite to the bending of the reso-
nance.
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→ Observe the effect of the sweep step size on hysteresis behaviour. Do you need to
choose different step sizes for different modulation depths? How does the waiting
time affect the results?

→ Find the shape of the Arnold’s Tongue (instability region).

→ Estimate the instability threshold λth.

- Observe hysteresis behaviour by sweeping bidirectionally over the frequency interval.
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For an additional point in the experiment, the following tasks can be performed.

- Study the Zurich Instruments API and write python scripts to control the measurements.
This should, among other functions, contain the ability to perform and store a phase
space measurement from the DAQ of the MFLI in a useable data format, and further
read and plot the data in the X and Y quadratures.

- Any oscillator when subject to a finite temperature is subject to thermal noise. Measure
the thermal noise of the string resonator using the X and Y quadratures in the Plotter.

- Apply an external force to the oscillator. Perform a noise measurement. What changes
do you see? (Hint: Look at the magnitudes of the quadratures as well as the shape!)

- Research noise squeezing. A parametric pump leads to phase-dependent damping coeffi-
cients below the instability threshold λth. As a result, the oscillator prefers to be in one
quadrature over the other. This leads to a ”squeezing effect” that can be observed in the
noise measurements.

- Use the resonator to observe squeezing effects at various parametric drives below λth.
Comment on your observations.

- Drive above λth with no external force. Add external noise using the Arbitrary Waveform
Generator. Investigate the quadrature plots.
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