
Manual number:

Physikpraktikum für Vorgerückte (VP)

vp.phys.ethz.ch

Magnetic Susceptibility
Instructions

Paolo Colciaghi and Theodore Walter

March 2016



CONTENTS 2

Abstract

The magnetic susceptibility is a material property, which describes the re-
action of a substance to an external magnetic field. The main goal of the
experiment is to check the quantitative agreement with reality of the Curie-
Weiss law, which can be done quite easily with the so-called Gouy method:
this method consists in measuring with a sensitive balance the downforce
exerted on a sample by an inhomogeneous magnetic field as a function of
some parameters. Even though the magnetic susceptibility is well described
by some simple formulae – based on measurable macroscopic properties and
well-known constants – this property can be properly explained only with a
statistical, quantum-mechanical approach. In this tutorial we will also give a
theoretical introduction to this topic, in order to get the feeling of the depth
needed for properly understanding it.
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• S. Flügge (ed.), Handbuch der Physik, Bd. 18, Springer, (1966)



2 ASSIGNMENT 6

2 Assignment

Measure the vertical force, K, acting on a pulverized Dysprosium Oxide
(Dy2O3) sample placed in an inhomogeneous magnetic field:

1. as a function of the height of the sample in the magnet, K(z). For the
subsequent measurements you have to set the height so, that the force
is maximized.

2. as a function of the strength of the magnetic field, thus of the current
flowing through the electromagnet: K(I). These measurements must
be performed at approximately T = 290 K and T = 800 K.

3. as a function of the temperature, K(T ), with a fixed current chosen
between 6 and 10 A, in the temperature interval 290 K ≤ T ≤ 900 K,
both with increasing and decreasing temperature and steps ∆T ≈ 40 K.
Enquire the deviations of the results from the Curie-Weiss law by means
of the complete Van Vleck’s theory (see section 3.2.5).

In addition, you have to:

1. Compare all the results with literature values.

2. Measure the magnetic field as a function of the current flowing through
the electromagnet, and check whether the dependence is linear. The
Gaussmeter is to be found in the laboratory store. Describe the method
you used for performing the measurements.

The evaluation and analysis of the measured values and the determination
of the susceptibility will be explained in chapter 7.
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3 Theory

3.1 Phenomenological model

3.1.1 The magnetisation ~M

The magnetic induction, ~B, (also called magnetic flux density) is proportional

to the magnetic field intensity ~H. The proportionality constant is given by
the product of the vacuum and material permeability, µ0 and µ respectively,
such that

~B = µµ0
~H, (1)

where the vacuum permeability is given by µ0 = 4π · 10−7 V s
A m

.
The magnetic induction can also be decomposed into a vacuum contribu-

tion ~B0 = µ0
~H, and a material contribution µ0

~M , such that:

~B = µ0

(
~H + ~M

)
(2)

The quantity ~M is called magnetisation. In this notation (proposed by Mie)
~M represents the component of the total magnetic field due to the material.

Therefore ~M has the same dimensionality of ~H, and represents the sum of
magnetic momenta of the particles per unit of volume. Another definition
of ~M was introduced by Pohl: ~B = µ0

~H + ~M . In this introduction we use
Mie’s definition (eqn. (2)).

We define the magnetic volume-susceptibility κ as follows:

~M = κ ~H (3)

Thus:
~B = µµ0

~H = µ0( ~H + κ ~H) = µ0(1 + κ) ~H

⇒ µ = 1 + κ (4)

On a macroscopic level we can distinguish paramagnetic and diamagnetic
substances with the sign of their susceptibilities:

κpara > 0

κdia < 0

Instead of the volume susceptibility κ (which is dimensionless) we often
use the molar susceptibility χM (m3kMol−1) and the specific susceptibility χ
(m3kg−1).
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3.1.2 Remarks for completeness

3.1.2.1 Primary quantities: As argued by Sommerfeld, ~B has to be
treated as a “primary” quantity. Indeed, only ~B can be measured by using
the Lorentz force or the induction law. On the other hand, ~H shows up in

the Maxwell equation ~∇× ~H = ~j+ ~̇D, and therefore comes out necessarily in
the presence of moving charges. Also ~M is caused by the motion of charges,
on an atomic level.

3.1.2.2 Anisotropy of κ: In the general case of an anisotropic crystal
the susceptibility can only be represented through a symmetric tensor. Since
a symmetric matrix represents a self-adjoined linear function, it can be or-
thonormally diagonalized, that is we can perform a main axis transform: we
can choose an orthonormal basis, in which κ is diagonal. From a physical
point of view, this means that there are three orthogonal axes (the main
axes) along whose κ is scalar (but the scalars relative to different axes are in
general not equal to each other). The anisotropy of the materials we use can
potentially be a problem, since the orientation of the crystalline lattice is rel-
evant, but not forcedly easy to determine. Nevertheless, in this experiment
we only deal with polycrystalline or pulverized samples, thus we can effec-
tively approximate the susceptibility of an anisotropic medium by averaging
over the elements of the diagonalized tensor:

κ =
κ1 + κ2 + κ3

3
(5)

3.1.2.3 The demagnetisation factor: If we produce an external, ho-
mogeneous field with strength ~Hext, this field will be disturbed by the intro-
duction of a sample. This perturbation near and inside of the sample can be
calculated with magnetostatics. For an arbitrary shape of the sample, the
internal field ~Hin is not only unequal to ~Hext, but it is different from place
to place. Only for a sample with an ellipsoidal shape, amongst whose main
axes one is parallel to ~Hext, we get an homogeneous ~Hin inside of the sample:

~Hin =
~Hext

1 + Fκ
~M = κ ~Hin

The demagnetisation factor F is a number; it is equal e.g. 1/3 for spher-
ical samples. For the samples we use in our experiment we have Fκ � 1,
thus

~Hin ≈ ~Hext
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So, starting from now, we can avoid using the vector sign on ~M and ~H, since
~M is always parallel to ~Hext (we reduced the problem to an one-dimensional

one). Can you think of a situation in which the demagnetisation factor is
relevant?

3.1.3 Thermodynamic state functions of magnets

Electric and magnetic phenomena are in general not independent from ther-
mal and mechanical properties of matter (secondary effects). Paramagnets
are amongst the simplest systems, to which we can apply the methods of
statistical thermodynamics, since – as long as the interactions between mag-
netic moments are negligible – they are composed by a set of independent
systems, that are connected by a thermal bath (the crystal lattice).

The internal energy per unit volume U ′ of a magnetic system can be
represented as follows:

dU ′ = T · dS − p · dV +H · dB (6)

where:
H · dB = H · dH +H · dM (7)

Analogously to the procedure in 3.1.1, we can separate H ·dB into two com-
ponents. Only the second part H ·dM depends on the material. Subtracting
the “vacuum part” H ·dH of the magnetic energy from U ′ would mean taking
into account for our system only the physical body, and not the magnetic
field in vacuum. Such a separation is not permitted in more complicated
cases, though. The characteristic internal energy of the system is thus

U = U ′ − µ0

2
H2

And so
dU = T · dS − p · dV + µ0H · dM (8)

This internal energy U = U(S, V,M) is then defined through the variables
entropy, volume and magnetisation.

It is often convenient to make a Legendre transform from the variables
(S,M) to the conjugated variables (T,H). This way we obtain a new state
function, which is called (Helmholtz’) thermodynamic potential Φ:

Φ = U − TS − µ0HM = Φ(T, V,H)

dΦ = −S · dT − p · dV + µ0M · dH (9)
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From this we gain the important relation:

M = − 1

µ0

∂Φ

∂H

∣∣∣∣
T,V

(10)

and, by using equation (3):

κ =
M

H
= − 1

µ0H

∂Φ

∂H

∣∣∣∣
T,V

(11)

If we know the thermodynamic potential Φ of the system (e.g. from a
statistical model), we can also calculate:

Entropy: S = − ∂Φ

∂T

∣∣∣∣
V,H

Specific heat capacity: cV,H = T
∂S

∂T

∣∣∣∣
V,H

Pressure: p = − ∂Φ

∂V

∣∣∣∣
T,H

3.2 Model-based part

3.2.1 Partition function and energy-eigenstates

We want to calculate the thermodynamic potential Φ with statistical me-
chanics based on an atomic model.

First of all, we treat a system composed of n identical particles, which
do not interact with each other. We assume the volume of the system to be
constantly V = 1. Statistical mechanics predict the potential Φ of such a
system with the Boltzmann distribution:

Φ = kT log (Zn) = nkT logZ (12)

Z =
∑
i

exp

(
− Ei
kT

)
(13)

Z is the partition function for the 1-particle eigenstates relative to the energy
eigenvalues Ei, which are obtained by solving the Schrödinger equation for a
representative particle.

Then the susceptibility of the system follows from (10), (11), (12), and
(13):

κ = M/H

M = − 1

µ0

· k · T · n · ∂ logZ

∂H
(14)
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If we know the energy-eigenvalues Ei as functions of H (Zeeman effect), we
can calculate κ with (13) and (14). This will be discussed in 3.2.2, 3.2.3, and
3.2.4.

Before that, we would like to generalize equation (14) for a system, that
contains different types of particles, which have the number of particles per
unit volume na, nb, nc, etc., and let us assume again no interaction between
the particles. In this case we can prove, that

Φ = kT log (Zna
a Znb

b . . .) = nakT logZa + nbkT logZb + . . . (15)

The partition functions Za, Zb, . . . can be obtained as in the case of equa-
tion (12) from the energy-eigenvalues (Ei)a, (Ei)b, . . . of the corresponding
1-particle Schrödinger equations. The susceptibility is then composed addi-
tively by the contributions of the various types of particles:

κ = κa + κb + . . . = − 1

µ0

· k · T
H
·
(
na ·

∂ logZa
∂H

+ nb ·
∂ logZb
∂H

+ . . .

)
(16)

In this calculation, one must keep in mind the following remarks:

1. The comfortable additivity used in (16), (14), and (12) is clearly based
on the assumption that the interaction between the particles is negli-
gible (1-particle approximation).

2. In the literature there often appears a partition function Zsystem for the
eigenvalues Ei of a system, which is composed by many particles. The
Schrödinger’s method has the advantage to be applicable both to the
Boltzmann-statistic and to the Fermi- or the Böse-statistic. We will
not analyse this any deeper, just be careful not to confuse Zsystem and
Z.

3.2.2 Electrons and ions in rigid bodies

3.2.2.1 Magnetic moment: Let us consider again the question posed
in 3.2.1: why do the energy eigenvalues Ei of a particle depend on H? The
answer is: because the particle has a magnetic moment, and the value of Ei
depends on its orientation:

Ei = Ei0 + (~µ+ q ~H) · ~H = Ei0 + µzH + qH2 (17)

where Ei0 is the value of Ei for H = 0. By µz we mean the z-component of
the magnetic moment ~µ of the particle; we assumed that ~H ‖ ẑ. The term

q ~H represents a magnetic moment, which disappears for H = 0.
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Every particle with a proper angular momentum ~J – e.g. a neutron, an
electron, a nucleus or a non-filled electron orbital – also exhibits a magnetic
moment ~µ. From quantum mechanics it follows that ~J2 and Jz – and thus
also ~µ2 and µz – are quantized quantities.

The term µzH in equation (17) leads, on one hand, to the Langevin
paramagnetism (which is going to be treated later on), and on the other hand
to the splitting of the energy levels in the Zeeman effect. Since the magnetic
moment of nuclei is about 103 times smaller than that of electrons, we can
neglect the nuclear magnetism while treating the static susceptibility. As
long as ~µ 6= 0, one can further show that the induced magnetic moment q ~H
is mostly negligible with respect to ~µ. For particles with ~µ = 0 – for example
the filled electron orbitals – we anyway have to consider the quadratic term
qH2 in equation (17). In the case of a free atom or ion, q is composed of two
parts q = qL.L. + qv.V..

From the term qL.L.H
2 follows a diamagnetic contribution to the suscepti-

bility – the so-called Larmor-Langevin diamagnetism κL.L. – which is always
present for bound electrons (also in the case of filled orbitals). In a precise
treatment of paramagnets we thus have to take into account κL.L. as well.

Apart from qL.L.H
2, an additional term qv.V. comes up, which leads to the

so-called van Vleck paramagnetism. This is based on the fact, that in the
case of bound electrons the eigenstates for H 6= 0 are slightly different from
the ones for H = 0, and so the charge distribution is slightly modified by the
application of the magnetic field.

As a first approximation, in our experiment we are going to neglect all
the effects due to qH2. Investigations about such effects can, for example,
provide us with some information about chemical bonds in organic molecules,
which are mostly diamagnetic. The effects induced by H are also important
for some ions of the rare earth elements. The van Vleck model will be given
in 3.2.5 for completeness.

3.2.2.2 Insulator and conductor: As an example of an insulator we
treat a salt, that contains diamagnetic ions, like e.g. CuSO4 · 5H2O. The
SO4 ions and the crystal water are composed of filled electron orbitals, whose
contribution to the susceptibility is negligible if compared to that of Cu2+

ions. The electronic configuration of Cu2+ is (Ar) 3dq. It exhibits an incom-
plete 3d orbital, which causes Langevin paramagnetism – even though it is
deformed by the introduction into the crystal.

As an example of a metal we treat one with filled internal orbitals, as
e.g. Cu. The configuration of Cu is (Ar) 3d104s1. In a first approximation
we assume that in the Cu-metal the 4s electrons are free, so that in this
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system exist two types of particle: the filled orbitals and the free electrons.
The latter supply two contributions to the susceptibility, namely the Pauli
spin paramagnetism κP and the Landau diamagnetism κL. More detailed
informations about this item can be found in the literature, we consider
ourselves satisfied with the following two remarks:

1. The eigenstates of the free electrons with H 6= 0 are different from the
ones with H = 0 because of the cyclotron motion. Correspondingly, the
quantum condition (Landau quantisation) responsible for the Landau
diamagnetism for H 6= 0 is different.

2. For the calculation of κP and κL for a degenerate electron gas we need
the Fermi statistics. In this case κP and κL are – in a first approxi-
mation – temperature-independent and so little, that the contribution
given to the susceptibility by the inner, closed orbitals cannot be ne-
glected any longer (equation (16)).

3.2.2.3 The atomic model by Russel-Sounders: From quantum me-
chanics we know that an electron, i, in an orbital can be described by the
quantum numbers ni, li, mi, si, and ms,i with the following properties:

• The square of the angular momentum, L2, of an electron moving in
the spherically-symmetric potential of the nucleus can only assume the
discrete values ~2li(li + 1), where li ∈ {0, 1, 2, . . . , ni − 1}. The z-
component Lz of the angular momentum can only be given by Lz = ~m,
with m ∈ {−l,−l + 1, . . . , l − 1, l}).

• The square of the electron-spin, S2, can only take the value ~2si(si+1),
where si = 1/2, and its z-component is always given by Sz = ~ms, with
ms = ±1/2.

The quantum-mechanical connection between the magnetic moment and
the mechanical angular momentum is

|~µl| =
√
l(l + 1)µB,

where µB = 9.2740154 · 10−24 A m2 is the Bohr magneton. Correspondingly,
for the magnetic spin-moment:

|~µs| =
√
s(s+ 1)µB.

If the atomic shell is composed by more than one electron, the quantum
number l of the resulting angular momentum ~l – for the example of two
electrons with angular momenta l1 ≥ l2 – can take the values:

l ∈ {l1 + l2, l1 + l2 − 1, . . . , l1 − l2}.
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We write ~L =
∑~li and, respectively, for the resulting mechanical spin mo-

mentum ~S =
∑
~si. The total angular momentum ~J of the electron shell of

the atom is the vectorial sum of the resulting orbital momentum ~L and of
the spin-momentum ~S:

~J = ~L+ ~S (Russel-Saunders coupling) (18)

The quantum number of the total angular momentum ~J can take the
following values:

j ∈ {l + s, l + s− 1, . . . , l − s} if l > s

j ∈ {s+ l, s+ l − 1, . . . , s− l} if s > l

The contributions of the magnetic moment vectors ~µl and ~µs are, respec-
tively:

|~µl| =
√
l(l + 1)µB and |~µs| =

√
s(s+ 1)µB

In general the relation between the total angular momentum and the total
magnetic moment is

~µj
µB

= gj
~J

~
,

or, expressed with the eigenvalue of ~J ,

|~µj| = gj
√
j(j + 1)µB,

where the so-called Landé factor gj is given by:

gj = 1 +
j(j + 1) + s(s+ 1)− l(l + 1)

2j(j + 1)
.

Inside of a single multiplet we can write:

~L+ 2~S = g ~J

The energy difference between two different spin states is in general large
and in general is decisively in the ground state which then determines the
magnetic properties of the material. For this ground state the quantum
numbers l and s can be predicted through the Hund’s rules:

1. The value of s for the ground state is equal to the maximal s, which is
compatible with the exclusion principle.

2. The value of l for the ground state is equal to the maximal l, which is
agreeable with condition 1 and with the exclusion principle.
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3.2.3 Langevin’s theory of paramagnetism (1905)

As we discussed in 3.2.2.2 – while treating paramagnetic salts – in a fist
approximation we only need to consider the susceptibility-contribution of
the incomplete orbitals.

Let ~J = ~L + ~S be the total angular momentum (according to equation

(18)), then the quantum condition for ~J2 is given by ~J2 = ~2j(j + 1), where
j represents the internal quantum number, which can assume only integer or
half-integer values. From the Schrödinger equation we can derive the energy
eigenvalues:

E(jz) ≈ E0 + µ0mjgjµBH, (19)

where mj is the magnetic quantum number, such that Jz can only assume
the values Jz = ~mj, where mj ∈ {−j, . . . , j}, analogously to ml and ms.

From eqn. (13) follows

Z = e−
E0
kT ·

+j∑
mj=−j

e−µ0mjgjµB
H
kT

= e−
E0
kT · sinh ((j + 1/2)x)

sinh (x/2)
, (20)

where

x := µ0 · jgjµB
H

kT
(21)

From equation (14) and by performing some calculus we gain an expres-
sion for the magnetisation:

M = MS ·Bj(x), (22)

where MS := n · jgjµB is the magnetisation-value in the saturation regime,
that is, when the magnetic moments of all particles are aligned by a strong
external magnetic field (in our case we assume it to be in the z-direction,
without the loss of generality). Bj(x) is the so-called Brillouin-function:

Bj(x) :=
2j + 1

2j
coth

(
2j + 1

2j
· x
)
− 1

2j
coth

(
x

2j

)
(23)

In the following we want to list some particular cases for (22) and (23):

1. j = 1/2:
B1/2(x) = tanh x (24)
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2. j →∞, (and µB → 0, such that x stays finite):

B∞(x) = coth x− 1

x
= L(x), (25)

where L(x) is called Langevin-function.

3. x→∞ (H →∞ or T → 0):

Bj → 1 , M →MS (26)

In order to approach the paramagnetic saturation, we thus need a very
strong magnetic field and a very low temperature.

4. x� 1 :

Bj =
j + 1

j
· x

3
(27)

That is, for j →∞:

B∞ =
x

3
, (28)

and for j = 1/2:
B1/2 = x (29)

From eqn. (22) follows (for this special case) a very important result,
which is valid for not too big fields and not too low temperatures:

The Curie law:

M = µ0n ·
p2µ2

B

3kT
·H =

C

T
·H (30)

κ = µ0n ·
p2µ2

B

3kT
=
C

T
(31)

where:

C := µ0n ·
p2µ2

B

3k
(32)

p := gj
√
j(j + 1) (33)

Equation (33) shows a good agreement with experiments for the salts
of the rare earth elements, but not for the salts of transition metals like
Mn or Fe. In the latter case, the experimental results are way better
described by the relation

p = 2
√
S(S + 1), (34)
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where S represents the total spin quantum number of the ion. This
phenomenon was motivated on a theoretical level by Bethe.
The z-component Lz of the angular momentum in this term is not a
constant of motion anymore – because of the influence of the dominat-
ing electrostatic fields in the crystal – and its expectation value 〈Lz〉
disappears. This effect is called “extinction of ~Lz”.

3.2.4 Weiss’ theory of ferromagnetism

So far we have been neglecting the interaction between paramagnetic atoms.
This is however not allowed, if we want to describe the phenomena of ar-
rangement coming up in para-, ferro-, and antiferromagnetism. In a rigorous
theory we should fist of all take into account every existing interaction; from
the resulting partition function we would be able to determine the magnetic
quantities. Unfortunately, this many-particles problem can only be solved in
very simple cases. We will not get any deeper into this item, we recommend
to the interested readers to take a look at the specialized literature.

3.2.4.1 Weiss’ internal field: In 1907, P. Weiss found a solution to
the problem posed above in better agreement with experimental results. He
applied the statistics of the individual particles (as we did before), and in-
troduced the interactions with nearby atoms through a Weiss’ internal field
HE = λM . With positive values of the field-factor λ we can explain para-
magnetism, and – as was later shown by Néel – with the introduction of
sub-lattices with different Weiss’ fields we can derive both antiferro- and
ferromagnetism.

Equations (22) and (25) can be re-written for a ferromagnet as follows:

M = MSB∞(x) with x = µ0 ·
H + λM

kT
(35)

Only the magnetisation, and not the susceptibility, is defined for a ferromag-
net. In the framework of the classical theory we use the Langevin-function
B∞(x), but it is possible to replace it with any Brillouin-function Bj(x),
where x = µ0jgjµB(H + λM)/(kT ).

The whole theory of ferromagnetism is contained in the implicit equa-
tion (35), which provides the field- and the temperature-dependence of the
magnetisation.

3.2.4.2 Curie-Weiss law: Above the ferromagnetic transition point (the
Curie temperature θ) the magnetisation is small, that is x � 1. If in eqn.
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(30) we substitute H through the sum H+HE of the external magnetic field,
we get:

M = µ0n ·
p2µ2

B

kT
(H +HE) =

C

T
(H +HE), (351)

and with
HE = λM (36)

follows

M =
C

T − θ
·H (37)

κ =
C

T − θ
, (38)

with the Curie temperature θ = C · λ, and the Curie constant (as in eqn.

(32)) C = µ0n ·
p2µ2B
3k

.

Pro memoria: The assumptions needed for the last formulae to be
valid are:

x = µ0 ·
jgjµB
kT

(H +HE)� 1 and T > θ.

Instead of the volume unit we can normalize the quantities also over
1 kMol. They are then given by

χM =
CM
T − θ

, (39)

where

CM = µ0N ·
p2µ2

B

3k
, (40)

where N is the number of magnetic atoms per kMol.

3.2.4.3 Remarks:

1. With the experimental values of χM a linear fit for 1/χM as a function
of T can be made. From the measurements in the temperature domain
T > θ we can extrapolate the “paramagnetic Curie temperature θ”. Be
aware that the latter does not forcedly coincide with the ferromagnetic
transition point TC . In the ferromagnetic region arises “spontaneous
magnetisation” MS. For T → 0 it amounts to MS(T → 0) = ngjjµj.
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2. For a negative field factor λ the Curie-temperature θ is also negative,
but the transition from para- to antiferromagnetic occurs at a positive
temperature TN – the so-called Néel point. The χM(T )-curve exhibits
a maximum at TN . According to a fairly rough approximation made by
Néel, TN is located at about −θ. Experimentally, it has been found that
−θ/TN ∈ [1.5, 5]. In the literature, a derivation for the curie constant
can be found to arrive at an expression similar to (32).

3. The experimental values for θ are way bigger than what would corre-
spond to a dipole-dipole interaction. According to Heisenberg, between
nearby paramagnetic atoms comes a quantum mechanical exchange in-
teraction, which is a consequence of Pauli’s exclusion principle.

3.2.5 Van Vleck’s quantum mechanical theory of paramagnetism
(1932)

In many ions of the rare earth elements, the quadratic term (quadratic in H)
of the expansion (17) plays a relevant role. The Larmor-Langevin diamag-
netic susceptibility is not going to be discussed here.

In the section 3.2.3 (about Langevin’s theory of paramagnetism) we as-
sumed that the ions are in the ground state, so that the moments induced by
H start giving a contribution to the magnetic susceptibility at not too high
temperatures.

The susceptibility of a set composed by n atoms with a magnetic moment
m = −∂E/∂H is given (according to (14)) by

κ = n · 〈m〉T
H

= − n
H
·
∑

∂E
∂H
e

E
kT

e
E
kT

. (41)

The energy of every level is representable as a power series in H in the
following form:

Ej,m(H) = E
(j)
0 +W

(j,m)
1 ·H +W

(j,m)
2 ·H2 + . . . (42)

The index j refers to the multiplet j, and m denotes the levels of the same
multiplet, which is degenerate in the absence of a field. Let again ~H =
(0, 0, H)T , so that the coefficients W

(j,m)
i can be written as follows:

W
(j,m)
1 = −µ0µB 〈j,m |Lz + 2Sz| j,m〉

W
(j,m)
2 = −µ0µB

∑
j′ 6=j

∑
m′

|〈j,m |Lz + 2Sz| j′,m′〉|2

Ej′ − Ej
(43)
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Assumption: The magnetisation is proportional to the magnetic field,
so that no saturation occurs; that is, the temperature is big enough for
guaranteeing, that

W
(j,m)
1 ·H +W

(j,m)
2 ·H2 � kT.

So we are allowed to expand the exponential in (41) and keep only the linear
terms (in H). So we get the following expression for the susceptibility:

κ = − n
H
·

∑
j,m

(
W

(j,m)
1 + 2W

(j,m)
2 ·H

)(
1− W

(j,m)
1 ·H
kT

)
e−

E
(j)
0
kT

∑
j,m

(
1− W

(j,m)
1 ·H
kT

)
e−

E
(j)
0
kT

(44)

By symmetry of the problem (space isotropy)
∑

mW
(j,m)
1 vanishes for any j

– think about it! The susceptibility is finally given by

κ = − n

kT
·

∑
j,m

(
W

(j,m)
1

2
− 2kTW

(j,m)
2

)
e−

E
(j)
0
kT∑

j e
−

E
(j)
0
kT · ωj

, (45)

where ωj is the multiplicity of the level j. This is the general formula by Van
Vleck, which is valid as long as H is small enough.

Particular cases:

3.2.5.1 Large multiplet-splitting compared to kT : Only the ground-
multiplet is appreciably occupied, thus we recover the Langevin-formula (31)

κ = µ0 ·
ng2jµ

2
Bj(j + 1)

3kT
+ nα. (46)

The presence of the second term nα in (46) is connected to the Zeeman effect
of second order. It is a constant contribution to the susceptibility, which is
independent from the temperature, and has the following value:

nα = µ0
nµ2

B

6(2j + 1)

(
F (j + 1)

Ej+1 − Ej
− F (j)

Ej − Ej−1

)
(47)

with the abbreviation

F (j) =
1

j

[
(s+ l + 1)2 − j2

]
·
[
j2 − (s− 1)2

]
(471)

In general, this second term is small and is thus neglected. Nevertheless, it
can show up, as we will see in 3.2.5.4.
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Remark: In opposition to the classical case, the magnetic moment of
the atom does not exist in the beginning; in order to make it appear we need
to apply a magnetic field, with which we measure it. This is a consequence
of the realistic character of quantum mechanics: the existence of a physi-
cal quantity only has meaning in an environment that this quantity can be
measured in.

3.2.5.2 High magnetic field: If the magnetic field is high enough and
the temperature is low enough, we can observe saturation effects. The ex-
pansion (44) is not valid anymore, and a more precise approximation yields
for the magnetisation the value of equation (22):

M = ngjjµBBj(x) with x = µ0gjjµB
H

kT
(22)

3.2.5.3 Small multiplet-splitting with respect to kT : Given the
splitting between the levels is small compared to kT , then the exponential
function in formula (45) can be substituted by 1. On the other hand, the
small splitting energy implies that the coupling between orbital and spin mo-
ment is small in comparison with their coupling with the magnetic field. Like
in the case of the Paschen-Back effect, both moments in the field are quan-
tized separately (first approximation!): every magnetic level is determined
by ml and ms. Thus

W (l)(ml,ms) = −µ0µB(ml +ms),

and the susceptibility is given by

κ = µ0 ·
Nµ2

B

3kT
· [l(l + 1) + 4s(s+ 1)] . (48)

This susceptibility is the one given by a mix of orbital and spin magnetic
moment. In this case we talk about Van Vleck’s paramagnetism of low
frequencies.

3.2.5.4 Multiplet splitting comparable to kT : At room temperature
we can observe this case especially in samarium- and europium-bindings.
Basing on an even more general equation than (45), Van Vleck (1932) was
able to calculate the susceptibility of these two three-valued ions. The total
number of atoms n gets distributed in groups at given values of the quantum
number j:

∑
nj = n. Further we assume, that

nj = n(2j + 2)e−
E
(j)
0
kT .
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As a result we gain the following formula for the susceptibility:

κ =

∑l+s
j=|l−s|

[
µ0g2jµ

2
B

3kT
· j(j + 1) + αj

]
(2j + 1)e−

E
(j)
0
kT∑l+s

j=|l−s|(2j + 1)e−
E
(j)
0
kT

(49)

By dint of the Goudsmit’s formula for the spin-orbit coupling it is possible
to express the spin-orbit constant through a screening constant, and then to
derive some usable expressions for the magnetic susceptibility. This contri-
bution to the susceptibility is temperature dependent, and corresponds to
the second term in (46). We talk about Van Vleck’s paramagnetism at “high
frequency”.
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4 Experimental methods

From the numerous known methods for determining the susceptibility of a
sample we can pick three amongst the most important principles:

4.1 Induction

Let the sample be in the homogeneous magnetic field of a pickup coil. If the
sample is abruptly removed or the magnetic field changed, in the coil will be
produced a voltage-kick, which will be proportional to M or, respectively, to
µ. To measure that we need very sensitive instruments, though. Gauging
measurements with known substances are not necessary, in the case of a
simple, well-known geometry of the sample.

4.2 Torque

This method is principally suited for analysing anisotropic substances, since
it allows the measurement of the diagonal elements of the tensor κ in the main
axis system. The mono-crystal sample is hung in the homogeneous magnetic
field so, that a main axis is vertical (hence parallel to the field). The torque
acting on the sample will thus be proportional to the difference between
the two horizontal main susceptibilities. Absolute measurements presuppose
additionally the determination of (κ1 +κ2 +κ3)/3 with a pulverized sample,
for example with the Gouy method.

4.3 Force in an inhomogeneous field (Faraday)

This method (which is by far the most used) allows to make very precise
relative determinations of κ, since a force acting on a sample hung in an
inhomogeneous field is proportional to the susceptibility. If the field gradient
where the sample is placed is unknown, the proportionality constant has
to be determined with a gauging measurement. In our experiment we are
going to apply a variant of this principle – the Gouy method – which will be
discussed in the next chapter.
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5 Samples and measurement setup

5.1 The Gouy method

Figure 1: The layout of the Gouy method.

5.1.1 Description

In this method the substance we want to examine has to be in the form of a
long cylindrical pipe, and must be hung to a balance between the pole shoes
of an electromagnet. The force exerted on the sample will be given by the
gradient of the magnetic energy U (see eqn. (19)):

~K = ~∇U = µ0
~∇
(∫

dV · 1

2
(κ − κair)H2

)
≈ µ0

2
~∇
(∫

dV · κH2

)
, (50)

where:
κ = Volume susceptibility of the sample

κair = Volume susceptibility of the air surrounding the sample (neglected)
dV = Volume element of the sample
H = Magnetic field intensity
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Let us call A the constant cross section of our sample. According to equation
(50), the vertical force (in z-direction) will thus be given by

Kz =
µ0

2

∂

∂z

(∫ zo

zu

dz · κH2A

)
=
µ0

2
κA

(
H2
o −H2

u

)
. (51)

This force can be measured with the balance as in the arrangement shown
in figure 1, where we can observe the weight variation of the sample when
turning the electromagnet on.

We want to determine χM with our weighting-method. From the defini-
tions of κ and χM follows:

κ = χM
ρ

[Molecular weight]
(52)

If we insert this into equation (51) and take into account, that for a prismatic
sample the density ρ is given by

ρ =
m

V
=

m

A · L
, (53)

where:
m = Mass of the sample
A = Cross section of the sample
L = Length of the sample

we then get:

Kz = µ0
ρ

[Molecular weight]
· χM ·

1

2
A
(
H2
o −H2

u

)
= µ0

m

[Molecular weight] · 2L
· χM

(
H2
o −H2

u

)
(54)

or

Kz = a · χM with a = µ0
m

2L · [Molecular weight]

(
H2
o −H2

u

)
. (55)

SinceHo andHu are normally unknown, amust be determined with a gauging
measurement. Nevertheless, in this experiment will be given a parameter,
which will make this unnecessary.

5.1.2 Remarks about our experiment

In our experiment the susceptibility can be determined starting both from
experimental and from theoretical quantities, and thus the constant a – which
depends strongly from the setup – can be calculated (see chapter 7).
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The value of a is approximately constant in our temperature range. The
temperature dependence of the susceptibility χM = χM(T ) is thus given
exclusively by the downforce Kz = Kz(T ):

χM(T ) = const ·Kz(T ) (56)

Formulae (54) and (55) were derived assuming the validity of equation (53),
which is respected only for prismatic samples. It is anyway easy to con-
vince ourselves, that it holds for a pulverized sample, if the powder is filled
homogeneously in a quartz pipe. Furthermore equations (55) and (56) are
independent of the cross section A of the sample, assuming that the magnetic
field is constant across the whole cross section at any height z.

5.2 Composition of the equipment

The magnetic field is generated with a direct-current magnet with current
stabilisation. The force has to be measured with a normal analytical balance.

An oven allows one to perform measurements in the interval between
room temperature and 950 K. The measurements of the temperature are
executed with a digital thermometer.
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6 Measurements

6.1 Sample and mounting

Figure 2: The hanging
of the sample.

The substance to be investigated is Dysprosium Ox-
ide (Dy2O3) in pulverized form, and was placed in a
carefully cleaned quartz pipe, which was then closed
under vacuum by fusing its end. The samples can-
not be heated beyond 650◦C.

The sketch in figure 2 shows the hanging of the
sample. With quartz bars of different lengths we
can regulate the height of the sample in the appara-
tus. The precise placement can be done with a hook
with a screw thread. The height must be adjusted
so, that the force acting on the sample is maximal.
Take care: The quartz glass pipes break very eas-
ily!

The part of Kz which arises from the quartz
must be measured with an empty pipe placed at the
same height. In a first approximation, this contri-
bution to Kz is temperature-independent. Quartz
(silicon dioxide) is diamagnetic. The measured val-
ues of Kz must be corrected appropriately.

6.2 The weighing scale

The analytical balance was originally set with a
scale pan, whose weight has to be compensated with
tare weight (figure 2). A user guide for the balance
is to be found at the workplace.

Any changes to the weight hanging from the
balance should be made exclusively in the “AUS”
(“off”) mode! The position “HALB” (“half”) is
then used for the adjustment of the gram- and tenth-
of-gram measurement. The fine adjustments and
measurement is then made in the “EIN” (“on”) po-

sition.
One should observe the green measurement scale when unblocking the

weight (“HALB” or “EIN” mode) for oscillations. If there are no smooth
oscillations initially, then it is likely the sample has gotten caught on some-
thing. If this happens, re-block the balance and carefully move it until the
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sample is placed exactly in the middle of the oven.
The green milligram scale of the balance has a 200 mg scope. The same

weight can thus be measured in two different adjustments of the hundredth-
gram-indicator. If the magnetic field is turned off, you must set the indicator
to the highest of the two possible values, such that, after turning the magnet
on, you will not have to change it (which would change the height of the
sample).
Important: The sample must hang freely in the oven!

6.3 Oven and temperature measurement

The oven is movable. It must be slid on so, that the sample is in the middle,
since the upper and lower part of the oven-tube are composed of badly-
conducting nickel silver and only the central part guarantees a homogeneous
heating of the sample. For the construction of the oven no ferromagnetic
materials were used.

Under the oven is fixed an acrylic glass tube, in order to prevent the con-
vective air currents to falsify the measurements. The weight of the sample
with the magnetic field off has to be checked before every measurement be-
cause air convection and water condensation cause small deviations, despite
the protection tubes.

The current through the oven – and thus the dissipated power and, con-
sequently, the temperature – can be regulated within a variable transformer.
Its external part is cooled with water.

Make sure that the temperature stays constant during the measurement
of a value because we are interested in the dynamics during thermodynamic
equilibrium.

6.4 The electromagnet

As a power supply we use a digital rectifier (whose instructions can be found
at the workplace). The magnet is driven by an adjustable direct voltage
source between 0 V and 150 V. The current in the magnet can be quasi-
continuously regulated in the interval between 0 and 10 A; it is stabilized, in
order to avoid fluctuations of H. The maximal permitted current is:

• Persistently: 5 A

• Only for short time: 10 A

The magnetic field strength is proportional to the current intensity. As a
part of the assignment you have to check this: what could eventual correc-
tions be due to?
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The magnet is protected by water cooling. Built-in relays prevent it to
work without cooling. The values for the tension and the current can be read
on the instruments. The grouped potentiometers allow a good reproducibility
of the measurements.

Important:

• When turning the device on, the voltage must be set to zero! The
potentiometer on the left of the front panel must be completely turned
to the anticlockwise direction. The voltage can be increased only when
the device is on.

• In order to prevent damage to the rectifier, an ultra-fast fuse is built
into the front panel. If this melts, do absolutely not replace it by a
normal one!
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7 Data evaluation and analysis

7.1 Verification of ferromagnetic contamination and
downforce as a function of the current

For the values taken at 290 K evaluate the quotient

α :=
Kz(4 A)

Kz(6 A) ·Kz(8 A)
,

and for the ones taken at 800 K evaluate:

α′ :=
K ′z(4 A)

K ′z(6 A) ·K ′z(8 A)
.

In the case there are no ferromagnetic contaminations, we should get α = α′,
while ferromagnetic substances show α 6= α′ (why?).

Plot graphically Kz = Kz(I), K ′z = K ′z(I), and also Kz = Kz(I
2), K ′z =

K ′z(I
2). Does the data fit your expectations?

7.2 Calculation of χM and a

By equations (39), (40), and (56) we have

a ·Kz = χM = µ0 ·
N · p2µ2

B

3k(T − θ)
=

CM
T − θ

where N is the number of magnetic atoms per kMol. Normally a is deter-
mined with a gauging measurement. We can extrapolate θ from a linear fit
of (1/Kz)(T ), and calculate CM , where we assume for Dy2O3:

pexp. = ptheor. = 10.6 (Why?)

Actually, experimental determinations for p may yield different values.
CM and θ allow the calculation of χM and a at T = 290 K.


