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Introduction

When charged particles (here α-particles) pass through matter, they interact with the
electrons and the nuclei of the target atoms (Coulomb interaction). The particles lose
energy in many steps, until their energy is (almost) zero and are deflected from their
primary direction. The following interactions with the target atoms are responsible for
this:

1. Inelastic collisions with the target electrons

2. Elastic collisions of the nuclei (Rutherford-scattering)

Process (1) leads to excitation or ionization of the target atoms (electron energy loss),
while process (2) (nuclear energy loss) displaces the target atoms (radiation damage)
and changes the direction of the charged particle. The mean energy loss per path length
(specific energy loss or stopping power) increases with decreasing kinetic energy of the
projectile, reaches a maximum and decreases strongly towards the end of the stopping
range (Bragg curve). The stopping range depends on the type of particle, on its initial
energy and on the material through which it passes.

The nuclear energy loss only becomes significant below 1 MeV/nucleon (when mT ≫
me) and increases with decreasing kinetic energy. Therefore the probability that a
change in direction occurs also increases. The statistical character of the inelastic and
elastic collisions is responsible for an energy straggling and an angular straggling of
the penetrating particles.
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1 Acquisition of knowledge

The following topics shall be understood at the end of the experiment:

1.1 Kinematic of the α-decay

Energy and momentum preservation, excitation energy, determination of the energy of
the α-particles, probability of decay.

1.2 Interaction of charged particles with matter

Specific energy loss, Bethe-Bloch-Formula, stopping range, energy straggling

1.3 Principal of a semi-conductor detector

band model of semiconductors, pn-transition, formation of a signal, energy resolution

1.4 Electronics (signal processing)

pre-amplifier, amplifier, analysis of energy spectra
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2 Basics

2.1 Specific energy loss (Theory)

In 1913, Niels Bohr derived a classical model [Boh13] for the specific energy loss of
charged particles in matter. Despite some strong simplifications this derivation shows
the main physical principles. We will therefore briefly follow the derivation step-by-
step to understand the processes of energy loss better.

We consider a charged particle 1 with mass m1, charge Z1e (e: elemental charge),
that travels with a velocity of v in the x-direction passing by a stationary particle 2
with mass m2, charge Z2e over a distance b (b: collision parameter, see figure 1).
We assume, that particle 2 is not noticeably moved when particle 1 passes and will
calculate the transition of momentum and energy to particle 2.

Figure 1: Geometrical representation of the collision process of 2 particles: particle 1
(mass m1, charge Z1e, velocity v) passes by a stationary particle 2 (mass m2, charge
Z2e) within a distance b (impact parameter).

The change in momentum in the x-direction disappears:

∆px = −Z1e

∫ ∞

−∞
Fxdt = 0 (2.1)

because particle 1 will transfer as much momentum in the positive x-direction as in the
negative x-direction.

For the y-direction:

∆py = Z1e

∫ ∞

−∞
Fydt = Z1e

∫ ∞

−∞
Fy

1

v
dx ≈ Z1e

2πbv

∫ ∞

−∞
2πbFydx ≈ Z1e

2πbv

Q

ε0
(2.2)

The last expression is derived from the divergence theorem (Gauss’ theorem), which
is a result that relates the flow (that is, flux) of a vector field through a surface to the
behavior of the vector field inside the surface.

For the interaction of an individual charge, we have Q = Q2 = Z2e and thus (ϵ2 :=
e2

4πε0
= 1.44[eV · nm]):

∆py,2 =
2Z1Z2

bv
ϵ2 (2.3)
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We then obtain the transferred energy T from particle 1 (with the energy E = m1v
2/2)

to particle 2:

T =
(∆py,2)2

2m2
=

2Z2
1Z

2
2ϵ

4

b2v2m2
=

Z2
1Z

2
2ϵ

4

b2E

m1

m2
∝ 1

Eb2
(2.4)

Particle 1 has an energy of E−T after the collision. All particles with the same energy
E passing by with the same impact parameter b lose the same energy T .

Now we consider the interaction of a large number of particles in a medium with an
atomic density of N particles per unit volume and an atomic number Z. Therefore
in this medium we have N atomic nuclei and n = NZ electrons per unit volume,
respectively. The total charge per unit volume (charge density) is the same for both the
nuclei and the electrons, and equals Q2/V = NZe.

The differential cross section, dσ(T ), for an energy transfer between T and T +dT is:

dσ(T ) = −2πbdb (2.5)

To include the interaction of all charge carriers, we integrate over differential hollow
cylinders with a wall thickness db and a length dx between bmin and bmax. An inte-
gration between 0 and ∞ is meaningless because b → 0 would mean ∆E → ∞ and
b → ∞ would disregard any shielding effects.

For a mean energy loss dE of particle 1 over a distance dx, we therefore obtain the
following expression:

−dE

dx
= n

∫ Tmax

Tmin

Tdσ (2.6)

In terms of impact factor b we get:

−dE

dx
= n

∫ bmin

bmax

T2πbdb = n

∫ bmin

bmax

Z2
1Z

2
2ϵ

4

b2E

m1

m2
2πbdb (2.7)

and therefore:

−dE

dx
=

2πnZ2
1Z

2
2ϵ

4

E

m1

m2

∫ bmin

bmax

1

b
db =

2πnZ2
1Z

2
2ϵ

4

E

m1

m2
ln

(
bmax

bmin

)
) (2.8)

We now consider the two quantities bmin und bmax.

The maximal transfer of energy Tmax in a single elastic collision between two particles
is:

Tmax =
4m1m2

(m1 +m2)2
E =

Z2
1Z

2
2ϵ

4

b2minE

m1

m2
(2.9)

and therefore:

bmin =
Z1Z2ϵ

2

2E

m1 +m2

m2
(2.10)
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In order to estimate the value of bmax, we assume that the corresponding minimal
transferred energy ∆Emin must be large enough to lift an electron to a higher energy
level. We set ∆Emin = I , where I is the mean ionization energy of the corresponding
atom. In case of an interaction with the target atoms (nuclear energy loss), I corre-
sponds to the mean energy required for a displacement of a target atom.

We therefore obtain:

bmax = Z1Z2ϵ
2

√
m1

m2IE
(2.11)

and therefore:

bmax

bmin
=

√
4Em1m2

I(m1 +m2)2
(2.12)

For the mean specific energy loss we therefore obtain:

−dE

dx
=

2πnZ2
1Z

2
2ϵ

4

E

m1

m2
ln

(
4Em1m2

I(m1 +m2)2

)
(2.13)

This calculation is based on direct collisions with electrons in the solid. There is
an other term of comparable magnitude due to distant resonant energy transfer (the
derivation is outside the scope of this simple approach). A correct quantum mechan-
ical derivation of the specific energy loss results in a doubled value and an additional
term in the logarithm that accounts for the relativistic effects at higher energies and
corrections for inner electron shells of the atoms.

With a quantum mechanical, but still without relativistic correction term we therefore
obtain (E = m1v

2/2) :

−dE

dx
=

4πnZ2
1Z

2
2ϵ

4

m2v2
ln

(
2m2v

2

I(1 +m2/m1)2

)
(2.14)

Electron energy loss For the electron energy loss (m2 = me = m ≪ m1, Z2 = 1,
n = Ne = NAtomZ) we obtain:

−dE

dx

∣∣∣∣
e

=
4πNeZ

2
1ϵ

4

mv2
ln

2mv2

I
=

4πZ2
1ϵ

4

mv2
NAtomZ ln

(
2mv2

I

)
(2.15)

Nuclear energy loss For a simple estimation, we consider protons with mass mp =
1836 ∗me as particles fall in.

Without considering the logarithmic term, we obtain the following expression for the
ratio of the nuclear to electron energy loss:

−dE/dx|n
−dE/dx|e

= Z2
me

m2
≃ Z2

me

2Z2mp
≃ 1

3600
(2.16)

Thereby we have assumed that the target nucleus contains as many protons as neutrons
with approximately the same mass: m2 ≈ 2Z2mp.

Already this simple estimation shows that the nuclear energy loss must be significantly
smaller than the electron energy loss.
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2.2 Specific energy loss (Bethe-Bloch Formula)

Bethe and Bloch derived a formula for the electron energy loss dE per unit length with
a correct quantum mechanical calculation (Bethe-Bloch formula). It can be written in
the non-relativistic approximation in the following form:

−dE

dx
=

2πz2ϵ4

ET

mT

me
Ne ln

(
4ETme

ImT
−K

)
(2.17)

or:

σ = − 1

N

dE

dx
=

2πz2ϵ4

ET

mT

me
Z ln

(
4ETme

ImT
−K

)
(2.18)

Thereby we have set E = ET , m1 = mT and Z1 = z and introduced a correction
constant K.

The specific energy loss can be given in different ways.

Stopping power The parameter S = −dE
dx is called the stopping power for the rel-

evant particle-target combination and has the dimension energy/length, often given in
units [keV/µm], [keV/mm] or [MeV/mm], depending in which range of values the
parameter lies.

Stopping cross section The parameter σ = − 1
N

dE
dx is called the stopping cross

section and has the dimension energy · area, often given in units of [eV·cm2] or
[eV/(1015atoms/cm2)].

Total mass stopping power The parameter 1
ρ
dE
dx is called the total mass stopping

power, and has the dimension energy / (mass/area), often given in units [keV/(µg/cm2)],
[keV/(mg/cm2)] or [MeV/(mg/cm2)].

For the calculation of the specific energy loss, the two constants I and K are often
adapted to experimental data, for example by means of SRIM-calculations [Sri08].

The used symbols are recapitulated in the following table:

For α-particles (ET = Eα) we obtain the following expression for the stopping cross
section:

σα = − 1

N

dE

dx

∣∣∣∣
α

=
3.80

Eα[MeV]
Z ln

(
548.58Eα[MeV]

I[eV]
−K

)[
eV

1015Atome · cm−2

]
(2.19)

The mean ionization energy I and the correction constant K are to be derived from
experiments (table 2).

When the material is not experimentally available, I can be calculated with the follow-
ing approximation [Leo94]:

The Bethe-Bloch formula only accounts for the electron energy loss. Since the nuclear
stopping increases with decreasing energy, we obtain significant deviations in the low-
energy range. The stopping cross section for α-particles in aluminum is given in figure
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Figure 2: Stopping power of α-particles in aluminum (I = 176.3 [eV], K = 0.198)
calculated using the Bethe-Bloch formula(Sektion 2.2) and with the Monte-Carlo sim-
ulation in SRIM (Appendix ??). For Eα > 1 [MeV] the relative uncertainty of the
stopping power calculated using the Bethe-Bloch formula is smaller than 2 %.
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Symbol Parameter Value Unit
e Elemental charge −1.602 · 10−19 [As]

mec
2 Rest energy of electron 0.511 [MeV]

NA Avogadro constant 6.022 · 10+23 [mol−1]
ε0 Dielectric constant 8.85 · 10−12 [As/Vm]
ϵ2 = e2

4πε0
1.44 [eV· nm]

[u] atomic unit 931.494 [MeV/c2]
z Ordinl number of the projectile
mT Mass of the projectile
ET Energy of the projectile
Z Ordinal number of the target atom
I Mean ionization energy of the target atom
Ne = N · Z, Electron density of the target atom
N = ρNA

M , Particle density of the target
ρ Volume density of the target
M Molar mass of the target atoms
K Correction constant

Table 1: Summary of the symbols used

Material I [eV] K Eu [MeV] rel. Uncertainty [%]
Al 176.3 0.198 1.0 2
Ar 230.6 −0.894 1.0 3
Au 1084.4 −1.064 1.5 1
C 87.1 1.039 0.8 3

Co 334.7 −0.614 1.0 2
Cu 385.3 −0.540 1.0 1
Fe 316.3 −0.649 1.0 2

Luft 95.0 0.650 0.6 1
Ne 143.7 0.544 0.8 2
Ni 360.5 −0.530 1.0 2
Ti 257.7 −0.612 1.0 2
Si 197.0 −0.507 0.6 2
H 16.05 11.80 0.6 8
O 109.0 0.332 1.0 4

Table 2: The constants I and K in the Bethe-Bloch formula for the stopping of
α-particles in various materials, determined by adaption of TRIM-calculations (Ap-
pendix ??) [Zie96]. Eu : minimal energy for the Bethe-Bloch formula with the given
relative uncertainty.

2 1. Deviations for energies larger than 1 MeV of the Bethe-Bloch formula are smaller
than 2%. Figure 4 shows the ratio of the nuclear to the electron stopping cross section
as function of energy [Sri08, Zie96]. It is obvious that at high energies only the elec-
tron stopping cross section is relevant, justifying the assumptions of the Bethe-Bloch
formula.

1The discrepancy in the Bethe-Bloch formula for low energies derives from the fact that the assump-
tion of complete ionization of the projectile is not valid anymore!

11



f(E) = -dE/dx
-d

E
/d

x 
[k

eV
/c

m
]

0

500

1,000

1,500

2,000

2,500

3,000

0

500

1,000

1,500

2,000

2,500

3,000

E [keV]
0 1,000 2,000 3,000 4,000 5,000
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Experiment
Bethe-Bloch
TRIM

Figure 3: SRIM/TRIM in contrast to Bethe-Bloch and measurements

Figure 4: The ratio of the nuclear to the electron stopping power cross section for α-
particles in aluminum.
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2.3 Specific energy loss in compounds (Bragg’s law)

The considerations so far are only valid for pure target elements.The calculations of
the stopping power for compounds and mixtures require additional thought. When
precise values are required one has to rely on direct measurements. However, a good
estimation can often be obtained by averaging dE

dx of the individual elements of the
compound, weighted by their individual proportions. Hereby we assume that the indi-
vidual contributions are independent of each other (Bragg’s rule). The stopping power
cross section or the total mass stopping power are best suited for this because a molecu-
lar density N is often given that is directly proportional to the density ρ of the material
(N = ρNA

M ).

For a compound AmBn, with m components of element A and n components of ele-
ment B, the stopping power cross section σAmBn is given by:

σAmBn = mσA + nσB (2.20)

where σA and σB are the stopping powers of the atomic components A and B.

Example CO2 σCO2 = σC + 2σO and −dE
dx

∣∣
CO2

= NCO2 · σCO2

Alternatively, we can also take the effective values for Z, M and I and directly apply
equation 2.17 to calculate dE

dx .

Zeff =
∑
i

aiZi, Meff =
∑
i

aiMi, ln Ieff =
∑
i

aiZi ln
Ii
Zeff

(2.21)

where ai is the number of atoms of the i-th element of the molecule.

2.4 Energy straggling

2.4.1 Bohr straggling

When an energy-rich particle moves along an amorphous material, it loses energy
by interaction with electrons in many individual statistically independent collisions
(electron energy loss). Thus the process is biased by statistical variations.

The total number of collisions and the energy loss per collision is statistically dis-
tributed. Thus individual particles with the same starting energy E0 will not have the
same energy anymore after passing a certain layer with a thickness t. The energy ∆E
is statistically distributed.

When ∆E ≪ E0, then we find a normal distribution for ∆E. Therefore the probability
dW (∆E) = f(∆E)d(∆E) of finding an energy loss between ∆E and ∆E+ d(∆E)
is given by the following probability density:

f(∆E)d(∆E) =
1

ΩB

√
2π

exp

(
−(∆E − ⟨∆E⟩)2

2Ω2
B

)
d(∆E) (2.22)

where ΩB is the square root of the mean square of the deviation (standard deviation)
of ∆E.
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For a material with a thickness t and an electron density Ne, we thus get for ⟨∆E⟩ and
ΩB the following expressions:

⟨∆E⟩ = E[∆E] =

∫ ∆Emax

∆Emin

∆Ef(∆E)d(∆E)

=

∫ σmax

σmin

∆EdW = Net

∫ σmax

σmin

∆Edσ (2.23)

and:

Ω2
B = V ar[∆E] = E[∆E2]−(⟨∆E⟩)2 ≃ E[∆E2] = Net

∫ σmax

σmin

∆E2dσ (2.24)

With:

dσ =
dσ/db

d(∆E)/db
d(∆E), ∆E =

c

b2
, c =

Z2
1Z

2
2ϵ

4

E0

m1

m2
(2.25)

we obtain:

dσ = −π
c

∆E2
d(∆E) (2.26)

and therefore:

Ω2
B = πcNet

∫ ∆Emax

∆Emin

d(∆E) = πcNet(∆Emax −∆Emin) (2.27)

With Ne = NZ, Z2 = 1, m2 = m, ∆Emax from equation 2.9 and ∆Emin = I , we
obtain:

Ω2
B ≃ 4πZ2

1ϵ
4NZt

(
m1

m1 +m

)2

≃ 4πZ2
1ϵ

4NZt (2.28)

because m ≪ m1.

ΩB is called Bohr straggling because it was first derived by Bohr. The equation 2.28
is only valid for small layer thicknesses t.

The Bohr theory tells us that the energy straggling is not dependent on the energy of
the projectile and is proportional to the square root of the electron density per unit area.

The full line broadening Γ (full width at half maximum, FWHM) of the energy distri-
bution that is caused by the straggling, is therefore:

Γ = 2
√
2 ln 2Ω ≃ 2.355Ω (2.29)

where Γ generally stands for energy straggling, independent of the theory.

The line width Γexp of the peak, that is measured in the experiment derives from the
finite thickness of the source ΓQ and the detector resolution ΓD, which is also normally
distributed. Because their parts are statistically independent, we obtain the following
for Γ:

Γ =
√

Γ2
exp − Γ2

Q − Γ2
D =

√
Γ2
exp − Γ2

0 (2.30)
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We therefore find that for the energy distribution of the α-particles:

N(E) =
N0

Ω
√
2π

exp

(
− [E − (E0 − ⟨∆E0⟩)]2

2Ω2
B

)
(2.31)

where N0 is the total number of particles in the peak, N(E) the number of α-particles
with an energy in the interval [E,E+dE], and E0 is the energy before the interaction.

However, equation 2.31 is only valid for small layer thicknesses t. Other influences
have to be considered for larger thicknesses.

2.4.2 Anomalous energy straggling

When the energy distribution of the α-particles has a certain width from the beginning,
another effect shows up that is of no statistical origin but can be attributed to the fact
that the specific energy loss is dependent on the energy of the particles [Pri82].

The specific energy loss (stopping power S) has a maximum that lies in the energy
range between 0.5 and 1 [MeV] for α-particles.

S rises monotonously with decreasing energy in the range above the maximum. The
particles therefore lose less energy on the high-energy side! This fact leads to an
increased peak width, independent of the widening caused by the Bohr straggling.
In the energy range below the maximum, S decreases again and thus the particles
rapidly lose less energy again. This, on the contrary, leads to a narrowing of the energy
distribution.

2.5 Range and range straggling

The range R of particles with an initial energy E0 entering a material is an impor-
tant parameter that is relatively simple to access. It is also possible to access the initial
energy when the range is known. Furthermore, the knowledge of the stopping is impor-
tant to dimension detectors used in radiotherapy and ion implantation as an important
technique to dope semiconductors.

2.5.1 Theoretical consideration

The range can principally be calculated simply by integration when the specific energy
loss as function of the particle energy is known:

R(E0) =

∫ E0

0

(
dE

dx

)−1

dE (2.32)

The result is the total range what can be visualized either in a nuclear-track emulsion
or a bubble nebula chamber. Here, it is visible, that the probability for a nuclear scatter
and thereby larger angular scattering strongly increases towards the end of the stopping
range. Still, the tracks are relatively straight for heavy particles as, for example, the
α-particles and thus the range is also relatively sharp. We just get for the reason of the
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statistical process of the stopping power a mean range Rm with a range straggling ΩR

bzw. ΓR = 2.355ΩR. The energy-range-relationship is also important because for a
known particle, the initial energy can be determined with a measured range.

In practice, a semi-empirical formula is used:

R(E0) = R(Emin) +

∫ E0

Emin

(
dE

dx

)−1

dE (2.33)

where Emin is the minimal energy for which the dE
dx -formula (Equation 2.17) is valid.

R(Emin) is a constant that is experimentally determined.

Some principles, derived from equation above, are given as follows:

Energy dependency The strong energy dependency of dE
dx (see equation 2.17) is

expressed in the first term in the form of a
E (a is a constant). The second term with

ln E
b shows only a week energy dependence (b is a constant). Setting the second term

constant, we obtain a dependency for the range in form of:

R ∝ E2
0 (2.34)

The logarithmic term results in a reduction of the exponent. The range is therefore
approximately proportional to E

3/2
0

This empirical law originates from Geiger and is precise to approximately 10% in the
range of 4 to 10 [MeV]. A better appoximation for the mean range is given by:

R(E) = a2E
2 + a1E + a0 (2.35)

The constants ai are experimentally determined. Table 3 gives the constants for the
different materials used in the experiment (determination of foil thickness).

Material a2 [µm/MeV2] a1 [µm/MeV] a0 [µm] rel. Uncertainty [%]
Al 0.3796 2.2550 0.7002 3
Au 0.1025 1.1145 0.2868 3
Co 0.1466 1.0032 0.4346 2
Cu 0.1420 1.1939 0.5765 3
Fe 0.1599 1.0628 0.4341 2
Ni 0.1379 1.0727 0.4793 4
Si 0.4231 2.6021 0.5253 5
Ti 0.2782 1.5665 0.4900 2

Mumetall 0.1423 1.0809 0.4670 2
Mylar 0.5894 2.2398 1.1487 1

Table 3: Constants ai for the foils used in the experimental part. In the last column the
relative uncertainty of the polynomial formula to the TRIM-calculation is given for the
range of 0.6 and 10 [MeV].

Furthermore the following useful rules can be obtained: R ∝ (mTZ)−2 for different
particles (mass mT,i, charge Zi) with the same energy ET in the same media

R(ET ,mT,1, Z1) =

(
mT 2Z2

mT,1Z1

)2

R(ET ,mT,2, Z2) (2.36)
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This allows one to derive the energy-range-relationship from the α-particles for pro-
tons, deuteron etc.

The stopping power S = dE
dx is proportional to the electron density Ne in relation to

the absorption material.

Ne = NZ =
NAZ

M
ρ (2.37)

The ratio Z
M is approximately equal for all elements (with the exception of heavy ions

and hydrogen):

Ne

ρ
=

NZ

ρ
≃ const (2.38)

It therefore makes sense to give the layer thickness and the range in units of mass per
area (e.g. in [mg/cm2]) instead of in units of charge (e.g. [cm]):

dξ = ρdx,
dE

dξ
=

dE

d(ρx)
=

1

ρ

dE

dx
(2.39)

Bragg-Kleemann-rule For the same particle in different materials with density ρi
and molar mass Mi the following rough approximation can be given:

R1

R2
≃ ρ2

ρ1

√
M1

M2
(2.40)

Range in compounds The following rough approximation can be given for the range
Rcomp in compounds:

Rcomp =
Mcomp∑
i
aiMi
Ri

(2.41)

where: Mcomp is the molar mass of the compound, Mi and Ri are the molar mass and
the range, respectively, in the individual compound i, and ai is the relative number of
atoms in the compound i.

2.5.2 Determination of ranges

The range and range straggling of α-particles in a gas (in this experiment air) can
be determined measuring the so-called number-distance curve. The number-distance
curve depicts the count rate of α-particles as a funcion of the distance x between the
source and the detector. Notice that the geometry of the apparatus is changed when
varying the distance, i.e. the solid angle captured by the detector increases for decreas-
ing x. (Alternatively, the measure can be done with a constant x but instead decreasing
pressure in the chamber which leads to a decreasing effective layer thikness.)
To do the measurement, the vakuum chamber is filled with air and the distance x be-
tween source and detector is increased to the point where no α-particle reaches the
detector anymore. The distance is now reduced step by step, making a measurement
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of a few minutes for each position.
The range spectrum is in a first order approximation described by a Gaussian distribu-
tion:

n(R) =
1√
2πΩ2

R

exp

(
−(Rm −R)2

(2ΩR)2

)
(2.42)

with mean range Rm (center of the distribution n(R)),
range straggling ΩR and therefore ΓR = 2.355ΩR = Full With at Half Maximum.
What is actually measured is the fraction of α-particles, which are not yet stopped after
penetrating the layer x. This fraction is given by:

ñ(x) = 1−
∫ x

−∞
n(R′) dR′

= 1−
∫ x

−∞

1√
2πΩ2

R

exp

(
−(Rm −R′)2

(2ΩR)2

)
dR′ (2.43)

Vice versa, the distribution n(R) can be found by differentiating the measured curve
ñ(x). Both distributions are shown in Fig. 5.
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Figure 5: Normalized number-distance curve for α-particles from a 241Am source in
air, and the corresponding interpolated range spectrum.
Rm: mean range, Rex: extrapolated range

The relation between the parameters Rm, Rex and the measured straggling ΩRM is
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given by

Rex −Rm

1/2
=

√
2π · ΩRM (2.44)

which leads to the value of the measured FWHM:

ΓRM = 2.355 · ΩRM = 2.355
2√
2π

(Rex −Rm) (2.45)

To finally find the true range straggling ΓR, the term has to be corrected by

ΓR =
√

Γ2
RM − Γ2

0 (2.46)

where Γ0 is the range straggling at 0mbar. The cause of this term is the fact that
the α-particles do have a finite spectral linewidth. The value Γ0 can be found by
extrapolating the measured curve ΓRM(p) for p → 0.

2.5.3 Residual Range

The experimentally determined data for the range of the α-particles produces too small
values. The reason for this is that there is an energy threshold ES in the experiments,
under which no α-particles are detectet (see spectrum in fig. 6).
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Figure 6: Energy threshold in a energy spectrum plot

The so-called residual range R(ES) = RS , which has to be added to the measured
values, can be found by using equation (2.47).
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In the experiment, the energy E and the stopping power dE/dx are determined. It be-
comes apparent that the ratio E/(dE/dx) barely changes over a great range of energy.
It turns out that the residual range can be approximated by:

RS =
3

2

ES

−(dE/dx)S
(2.47)

It is important to notice that it is not an easy task to estimate the denominator of this
term. It might be an option to also do a TRIM-simulation to find a reasonable estimate.

2.6 Energy loss in foils (absorber)

The energy loss ∆E that a charged particle with an energy E0 loses by passing through
a thin absorber with thickness t, can be approximated by following equation:

∆E =

(
dE

dx

)
m

t (2.48)

where
(
dE
dx

)
m

is the stopping power averaged over the energy of the particle in the
range E0 and E0 −∆E. The value E0 can be taken when the energy loss is small and
thus the stopping power hardly changes.

For a thicker absorber that causes a strong energy loss, we have to follow a different
way:

• One possibility is to divide the absorber into many thin layers with a thickness
ti:

t =

n∑
i=1

ti (2.49)

The individual energy loss ∆Ei in the thin layers at an energy Ei−1 −∆Ei has
then to be calculated step by step and summed up to obtain the total energy loss:

∆E =
n∑

i=1

∆Ei (2.50)

The number of layers n has to be so large, that the stopping power in a single
layer can be taken as constant.

• A simpler possibility exists when the energy-range relationship is known for the
particle-absorber combination, see figure 7 [Kno00].

R0 is the range of the particle with an energy E0. We then obtain the range Rt by
subtracting the foil thickness t from R0. Rt is exactly the stopping range, that a
particle with the energy Et would have in the material of the foil. Therefore we
determine E0 and Et and then take the values R0 and Rt from the energy-range
curve to determine the foil thickness from the difference:

∆E = E0 − Et, t = R0 −Rt (2.51)
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Figure 7: An illustration of the determination of the foil thickness from the energy-
range relationship. E0 : entrance energy, Et : exit energy, ∆E = E0 − Et (energy
loss in the foil), R0 : range for E0, Rt : range for Et, t = R0 −Rt (foil thickness).
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3 Measurement setup

3.1 Overview of the apparatus

The setup of the used apparatus is given in figure 8. The α-source (241Am) and the
detector are aligned on an axis in a glass cylinder (vacuum-tight chamber). 7 scatter
foils made from different materials on a wheel can be put into the fixed distance be-
tween detector and source. The chamber can be pumped down to about 0.5 [mbar].
The detector signals are processed outside the box and fed via a multi-channel analyzer
(ADC) card into a PC.

Figure 8 shows the setup for gas. The only difference to the setup for solids is the
variable distance of the source to the detector instead of the absorption foil.

Figure 8: Experimental setup for the determination of the absorption of α-particles in
gas.

3.2 Components of the apparatus

3.2.1 Diaphragm pump

A diaphragm pump is a positive displacement pump that uses a combination of the
reciprocating action of a rubber, thermoplastic or teflon diaphragm and suitable non-
return check valves to pump. The diaphragm pump evacuates completely oil-free (no
oil vapors). The oil pump of the type N 813.4 ANE (Neuberger) used in this experi-
ment has two stages and reaches a final pressure of 0.5 hPa with a pumping speed of
13 l/min.

3.2.2 Source

The α-source is 241Am plated in an area with a diameter of 7 [mm] on a metal disc. The
241Am has a half-life of 432 [y] and therefore the activity (IS (1.5 [µCi] = 185 [kBq])
can be assumed to be constant over the course of the experiment). α-particles with
different energies are emitted (4 groups of particles can be resolved, see appendix A).
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3.2.3 Sample foils

Different sample foils mounted on a wheel (positions 2 to 8) can be rotated in between
the detector and source (7 [mm] from the detector). Position 1 is empty. The infor-
mation about the allocation of the foils and their properties can be found in appendix
C.

3.2.4 Variable distance

The position of the source can be adjusted with respect to the detector and the sample
foil. By varying the distance for different measurements with a fixed gas pressure, one
can gather data for different effective layer thicknesses.

3.2.5 Detector

A surface barrier detector is used to detect the α-particles (see figure 9). It is p-doted
single crystalline silicon coated with a thin aluminum layer. The specific resistance
of the silicon is 3800 [Ωcm]. When applying a voltage of -100 [V], the detector has
a sensitive layer of at least 100 [µm] [Leo94], which is enough to stop α-particles
with an energy of more than 10 [MeV] (see figure 10). The α-particles produce a
charge pulse with an amplitude QI , that is proportional to the energy deposited in the
sensitive layer. The active surface of the detector is 50 [mm2]. The energy resolution
of the detector is about 18 [keV] for 5.5 [MeV] for α-particles.

Figure 9: Schematic presentation of a surface barrier detector [Fed86].
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Figure 10: Energy-range curve for α-particles in silicon [Sri08].

3.2.6 Electronics

The pre-amplifyer positioned close to the detector outside the chamber converts the
charge pulse QI from the detector into a voltage pulse QI , and is therefore also pro-
portional to the particle energy. The main amplifier is then responsible for the final
signal amplification and shaping of the signal, so that it can be converted to a digital
value with a multichannel analyzer.

3.2.7 Computer

Measurement program: Setup as pulse height analyzer (PHA), setting the amplification
to 8182 channels.

You can switch between the measurement program and other programs without stop-
ping data acquisition!

3.2.8 Detector voltage and amplification

Have a look at the pulse shape of the detector signals after the per-amplifier. Switch
the main amplifier to the right polarity (MCA needs positive pulses, between 0 and
+10 V). Set the amplification gain for the 5.5 MeV α-particles to get about 9 V signals
(use oscilloscope). Don’t change the gain over the course of the measurement again!
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4 Safety instructions

It is strictly required that you read all safety instructions given in appendix E, which
are also displayed at the testing site!

4.1 Start-up of the experiment

• Computer

Start-up computer.

Open program for acquisition and analysis of spectra Start > Programme >
FA8T > MCA− 3

Open program for the control of the wheels with the foils Start > Programme >
Stepper

• Detector voltage

Ensure that the chamber (glass cylinder) is totally covered with the light-shield.
The detector is light-sensitive!

Detector voltage must be set to zero before the power supply is switched on!
The detector voltage must be increased slowly until −100 [V] is reached. Max.
voltage: −120 [V], check current!

Never remove the light-shield from the chamber when there is still a voltage on
the detector!

• Evacuation of the chamber

Close the valve to the chamber (V1, see figure ??) and the venting valve (V2).

Switch on the vacuum pump and pump down the tube first. Then open the V1
slowly (otherwise foils may brake!) and pump down the chamber (within 3-
5 minutes). On the oscilloscope you can now see the α-particles entering the
detector.

• Electronics

Switch on the amplifier right at the beginning (while the electronics heat up,
shifts in the detector signals may be observed).

4.2 End of experiment

• Detector voltage

The detector voltage has to be set to zero slowly, before the power supply is
switched off.

• Venting of the chamber

Switch off pump. Open V2 valve. Open V1 valve very slowly to vent the cham-
ber with about 2 [mbar/s] (otherwise foils may brake!).

Move two thick foils between the source and detector. No α-particles should
reach the detector anymore.

25



• Oscilloscope (if existing)

Switch off.

• Electronics

Switch off.

• Computer

Close programs and switch off.
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5 Experimental tasks

Test sites 1 and 2

The stopping power of α-particles in gas shall be examined in the following experi-
ment. Firstly, the specific energy loss and the energy straggling of the α-particles will
be studied in detail. Secondly, the thickness of thin foils of known composition will be
determined.

5.1 Preparation for the experiment

5.1.1 Kinetic energy of the α-particles

Calculate the kinetic energy Ti of the α-particles, that are emitted by an 241Am-source
(see appendix B).

Following this, determine the mean energy Tm by using the relative probablities for
the transitions.

5.1.2 Specific energy loss

Calculate with the Bethe-Bloch formula (section 2.2) the stopping power of α-particles
in air (Bragg’s law, see section 2.3) in units [eV/(1015 atoms/cm2)] and [keV/mm].

5.2 Alpha spectra of Am-source and calibration of the detector

Acquire the energy distribution of the α-particles when the chamber is evacuated. De-
termine the mean energy of the individual transitions and their relative frequency. Use
the results to calibrate together with section 5.1.1 the detector (one-point calibration).

Make sure that there isn’t any foil between the source and the detector!

Determine:

Peak position Ei

Peak width Γi

Peak heigth Ni (average over several channels)
Peak volume NiΓi

Abundance Hi =
NiΓi∑4
i=1 NiΓi

5.3 Foil thickness

Determine the thickness of the sample foils by using the measured energy loss of the
α-particles.

Calculate the foil thickness with both the Bethe-Bloch formula and polynomial formu-
lae using experimental values (table 3 in chapter 2.5). Compare both results.
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5.4 Energy distribution / stopping range

Determine the number-distance curve and use it to find the stogging range, i.e. the
mean and extrapolated distance Rm and Rex. Also find the range straggling ΓR.
Find the residual range RS and reconsider the distances measured.
Compare your results to those in literature.

Use STP (standard conditions for temperature and pressure) for ranges. (273.15K,
101.325 kPa)

5.5 Specific energy loss

Determine the energy distribution of the α-particles as a function of gas pressure p
⇒ E = E(p), ΓE = ΓE(p) (E: mean energy, ΓE : full width half maximum). Use the
effective layer thickness x = x0

p
p0

T0
T with STP p0 = 1013.25 hPa and T0 = 273.15

K) for your computations.
Then determine:

• The specific energy loss −dE
dx = f(x)

• The values of xmax, Emax and −dE
dx max

for the maximal specific energy loss

• The specific energy loss as a function of the energy of the particle (Bragg curve)
and compare with the theory (Bohr straggling)

• Compare the measured energy straggling Γ = f(x) with the theory (Bohr strag-
gling). (don’t forget to correct the measured energy width according to equation
2.30 (no foil: Γexp(0)

2 = Γ2
Q + Γ2

D).

5.6 Discussion

Compare and discuss in detail the experimental results with the theoretical predictions.
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Appendix

A Stopping Range of the α-decay

The source for the α-particles is 241Am (Americium) plated on a metal disc (thin
layer). 241Am α-decays with a half-life of n 432 [y]:

241Am −→ 237Np∗ + α

The remaining element is 237Np (Neptunium), likely in an excited state with an exci-
tation energy of EEx. This energy is most often emitted as electro-magnetic radiation.
The kinetic energy T of the emitted α-particles can be calculated based on the con-
servation of energy and momentum. We can assume an infinite thin source with no
self-absorbtion of energy.

The energy balance of the α-decay of 241Am is given as a diagram in figure 11. The
total energy is conserved. We can therefore establish the following equation for the
energy balance:

m(241Am)c2 = [m∗(237Np) +m(4He)]c2 + T

= [m(237Np) +m(4He)]c2 + T + EEx (A.1)

Q0 = [m(241Am)−m(237Np)−m(4He)]c2 (A.2)

where m∗(X)c2 = m(X)c2 + EEx is the rest energy of the excited nucleus X. Q0 is
the decay energy and is the maximum value for the kinetic energy T , that is available.
The mass of the neutral atoms have to be applied (appendix B).

It can be written simply as: m(241Am) = mAm, etc.

T = Q0 − EEx = Tα + TNp (A.3)

Different groups of α-particles with discrete energies Tα,i are emitted, based on the
discrete vales EA,i of the excitation energy of the remaining nucleus.

Ti = Qi = Q0 − EA,i = Tα,i + TNp,i (A.4)

The kinetic energy Ti is shared by the α-particle and the remaining nucleus.

Momentum balance Because a resting 241Am-nucleus decays, we obtain:

0⃗ = p⃗α + p⃗Np (A.5)

which means:

p2α = p2Np, TNp = Tα
mα

mNp
(A.6)
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Figure 11: Energy balance of the α-decay of 241Am.

and therefore:

Tα,i =
Qi

1 +mα/mNp
=

Q0 − EA,i

1 +mα/mNp
(A.7)

The intensity Iα,i of the most intense α-particle groups are given in table 4. Calculate
the energy Tα,i of the α-particles by means of the given values of the excitation ener-
gies EA,i. The required values for the masses in atomic units are given in appendix B.

i EA,i [keV] Iαi [%]
0 0 0.34
1 33.2 0.22
2 59.54 84.5
3 102.96 13.0
4 158.51 1.6

Table 4: Excitation energies and transition probabilities for the α-decay of 241Am in
237Np.
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B Atomic mass for the calculation of the energy of the α-
particles

Quelle: Nucl. Phys. A595 (1995) 409-480

m(α) = 4.001487900 [u]

m(4He) = 4.002603250 [u]

m(237Np) = 237.048167253 [u]

m(241Am) = 241.056822944 [u]

1 [u] · c2 = 931.49432 [MeV]

The excitation energy of the 237Np-nucleus and the transition probability (respectively
the abundance) can be found in the book at the test site [Led67].
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C Sample foils

Foils Test site 1
Position Material Z r [ g

cm3 ] N [1022At./cm3]
1 ∅ - - -
2 Al 13 2.70 6.03
3 Al 13 2.70 6.03
4 Ti 22 4.52 5.68
5 Fe 26 7.87 8.48
6 Ni 28 8.90 9.13
7 Au 79 19.32 5.91
8 Mumetall 8.81 8.83

Table 5: Position and properties of the absorption foils of test site 1

Foils Test site 2
Position Material Z r [ g

cm3 ] N [1022At./cm3]
1 ∅ - - -
2 Al 13 2.70 6.03
3 Al 13 2.70 6.03
4 Cu 29 8.92 8.45
5 Co 27 8.90 9.09
6 ∅ - - -
7 Au 79 19.32 5.91
8 Mylar 1.40 9.63

Table 6: Position and properties of the absorption foils of test site 2

Atom Z Atom-%
Mylar H 1 36.36

C 6 45.45
O 8 18.18

Mumetall Ni 28 77.0
Fe 26 14.0
Cu 29 5.0
Mo 42 4.0

Table 7: Properties of Mylar and Mumetall

32



D Lab protocol

Proposition for the layout of the lab protocol. The following points should be included:

1. Name/title of the experiment

2. Username and date

3. Abstract

4. Conceptual formulation

5. Short introduction

Theoretical basics, most important formulae with their extent of validity etc.

6. Measurement method

7. Experimental setup

Used instruments, block diagram

8. Measurement results (table with results in the appendix)

9. Evaluation of the results

• Figure with experimentally derived data with error bars.

• Summary of the measurement results

10. Discussion of the results

11. Bibliographical reference

Note to the content of the “Abstracts” The purpose of the abstract is to give readers
concise information about the content of the article. The abstract should be informa-
tive and not only indicate the general scope of the article but also state the main results
obtained and conclusions drawn. The abstract is not part of the text and should be
complete in itself; no table numbers, figure numbers, references or displayed mathe-
matical expressions should be included. It should be suitable for direct inclusion in
abstracting journals and should not normally exceed 200 words. If the article is not in
English, an English version of the abstract must also be supplied. Since contemporary
information-retrieval systems rely heavily on the content of titles and abstracts to iden-
tify relevant articles in literature searches, great care should be taken in constructing
both. Some authors find difficulty in abstracting their own articles and it is therefore
suggested that they seek the help of a colleague when in doubt. (From: Institute of
Physics / Notes for Authors)
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E Safety instruction for the Alphaabsorption experiment

The vacuum chamber must never be opened. The activity of the 241Am-source
has an activity of 1.5 [µCi] = 185 [kBq]. More information about radioactivity and
radiation protection can be found in [Vol07].

Additionally, the measurement setup contains some expensive and sensitive compon-
tents (pressure transducer, detector, foils, amplifiers), that can easily be destroyed,
when for example the pressure or the detector voltage is changed quickly! Please
consider the following instructions to avoid any damage!

• Detector voltage

The detector voltage has to be set to zero slowly before the power supply is
switched off.

• Venting of the chamber

Switch off pump. Open V2 valve. Open V1 valve very slowly to vent the cham-
ber with about 2 [mbar/s] (otherwise foils may brake!).

Move two thick foils between the source and detector. Now, no α-particles
should reach the detector anymore.

• Electronics

Properly switch off all electronic instruments!
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